Solar eclipse of October 24, 2098

Last updated
Solar eclipse of October 24, 2098
SE2098Oct24P.png
Map
Type of eclipse
NaturePartial
Gamma −1.5407
Magnitude 0.0056
Maximum eclipse
Coordinates 61°48′S95°30′W / 61.8°S 95.5°W / -61.8; -95.5
Times (UTC)
Greatest eclipse10:36:11
References
Saros 164 (1 of 80)
Catalog # (SE5000) 9730

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, October 24, 2098, with a magnitude of 0.0056. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

This minor eclipse is the first solar eclipse of Saros cycle 164. It is the shallowest solar eclipse of the 21st century; at best, in a remote location within the Southern Ocean the moon will block out 0.56% of the sun's diameter with the sun barely above the horizon. Gamma is equal to −1.5407, which is also farther from zero than any other solar eclipse in the century. The eclipse is not listed by some sources. [1]

There will not be a shallower partial eclipse until August 23, 2883.

Eclipses in 2098

Solar Saros 164

Solar eclipses of 2094–2098

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [2]

The solar eclipses on January 16, 2094 (total) and July 12, 2094 (partial) occur in the previous lunar year eclipse set, and the partial solar eclipses on April 1, 2098 and September 25, 2098 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2094 to 2098
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 June 13, 2094
SE2094Jun13P.png
Partial
−1.4613124 December 7, 2094
SE2094Dec07P.png
Partial
1.1547
129 June 2, 2095
SE2095Jun02T.png
Total
−0.6396134 November 27, 2095
SE2095Nov27A.png
Annular
0.4903
139 May 22, 2096
SE2096May22T.png
Total
0.1196144 November 15, 2096
SE2096Nov15A.png
Annular
−0.20
149 May 11, 2097
SE2097May11T.png
Total
0.8516154 November 4, 2097
SE2097Nov04A.png
Annular
−0.8926
159May 1, 2098164 October 24, 2098
SE2098Oct24P.png
Partial
−1.5407

Saros 164

This eclipse is a part of Saros series 164, repeating every 18 years, 11 days, and containing 80 events. The series will start with a partial solar eclipse on October 24, 2098. It contains total eclipses from June 1, 2459 through June 20, 3090; hybrid eclipses from July 1, 3108 through August 3, 3162; and annular eclipses from August 13, 3180 through September 4, 3216. The series ends at member 80 as a partial eclipse on March 10, 3523. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 26 at 6 minutes, 30 seconds on July 25, 2549, and the longest duration of annularity was produced by member 63 at 1 minutes, 21 seconds on September 4, 3216. All eclipses in this series occur at the Moon’s descending node of orbit. [3]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 1, 2011 and October 24, 2098
May 31–June 1March 19–20January 5–6October 24–25August 12–13
118120122124126
SE2011Jun01P.png
June 1, 2011
SE2015Mar20T.png
March 20, 2015
SE2019Jan06P.png
January 6, 2019
SE2022Oct25P.png
October 25, 2022
SE2026Aug12T.png
August 12, 2026
128130132134136
SE2030Jun01A.png
June 1, 2030
SE2034Mar20T.png
March 20, 2034
SE2038Jan05A.png
January 5, 2038
SE2041Oct25A.png
October 25, 2041
SE2045Aug12T.png
August 12, 2045
138140142144146
SE2049May31A.png
May 31, 2049
SE2053Mar20A.png
March 20, 2053
SE2057Jan05T.png
January 5, 2057
SE2060Oct24A.png
October 24, 2060
SE2064Aug12T.png
August 12, 2064
148150152154156
SE2068May31T.png
May 31, 2068
SE2072Mar19P.png
March 19, 2072
SE2076Jan06T.png
January 6, 2076
SE2079Oct24A.png
October 24, 2079
SE2083Aug13P.png
August 13, 2083
158160162164
SE2087Jun01P.png
June 1, 2087
SE2098Oct24P.png
October 24, 2098

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipse on October 24, 2098 (part of Saros 164) is also a part of this series but is not included in the table below.

Series members between 1801 and 2011
SE1804Feb11H.png
February 11, 1804
(Saros 137)
SE1815Jan10A.png
January 10, 1815
(Saros 138)
SE1825Dec09H.png
December 9, 1825
(Saros 139)
SE1836Nov09T.png
November 9, 1836
(Saros 140)
SE1847Oct09A.png
October 9, 1847
(Saros 141)
SE1858Sep07T.png
September 7, 1858
(Saros 142)
SE1869Aug07T.png
August 7, 1869
(Saros 143)
SE1880Jul07A.png
July 7, 1880
(Saros 144)
SE1891Jun06A.png
June 6, 1891
(Saros 145)
SE1902May07P.png
May 7, 1902
(Saros 146)
SE1913Apr06P.png
April 6, 1913
(Saros 147)
SE1924Mar05P.png
March 5, 1924
(Saros 148)
SE1935Feb03P.png
February 3, 1935
(Saros 149)
SE1946Jan03P.png
January 3, 1946
(Saros 150)
SE1956Dec02P.png
December 2, 1956
(Saros 151)
SE1967Nov02T.png
November 2, 1967
(Saros 152)
SE1978Oct02P.png
October 2, 1978
(Saros 153)
SE1989Aug31P.png
August 31, 1989
(Saros 154)
SE2000Jul31P.png
July 31, 2000
(Saros 155)
SE2011Jul01P.png
July 1, 2011
(Saros 156)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 11, 2007</span> Partial solar eclipse September 11, 2007

A partial solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, September 11, 2007, with a magnitude of 0.7507. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 25, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, September 25, 2098, with a magnitude of 0.7871. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 31, 1989</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 2, 1967</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, November 2, 1967, with a magnitude of 1.0126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 15, 2091</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, August 15, 2091, with a magnitude of 1.0216. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 2, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, May 2, 2087, with a magnitude of 0.8011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 15, 2096</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 11, 2097</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 11, 2097, with a magnitude of 1.0538. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 2, 2095</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, June 2, 2095, with a magnitude of 1.0332. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 18, 2091</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 1, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 1, 2098, with a magnitude of 0.7984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 7, 2094</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, December 7, 2094, with a magnitude of 0.7046. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It will be visible across North America.

<span class="mw-page-title-main">Solar eclipse of October 26, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, October 26, 2087, with a magnitude of 0.4696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 3, 1946</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, January 3, 1946, with a magnitude of 0.5529. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 5, 1924</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, March 5, 1924, with a magnitude of 0.5819. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "Solar and Lunar Eclipses Worldwide – 2098". www.timeanddate.com. Retrieved 2023-12-15.
  2. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. "NASA - Catalog of Solar Eclipses of Saros 164". eclipse.gsfc.nasa.gov.