Solar eclipse of November 3, 2013 | |
---|---|
Type of eclipse | |
Nature | Hybrid |
Gamma | 0.3272 |
Magnitude | 1.0159 |
Maximum eclipse | |
Duration | 100 s (1 min 40 s) |
Coordinates | 3°30′N11°42′W / 3.5°N 11.7°W |
Max. width of band | 58 km (36 mi) |
Times (UTC) | |
(P1) Partial begin | 10:04:34 |
(U1) Total begin | 11:05:17 |
Greatest eclipse | 12:47:36 |
(U4) Total end | 14:27:42 |
(P4) Partial end | 15:28:21 |
References | |
Saros | 143 (23 of 72) |
Catalog # (SE5000) | 9538 |
A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, November 3, 2013, [1] [2] [3] with a magnitude of 1.0159. It was a hybrid eclipse of the Sun with a small portion over the western Atlantic Ocean at sunrise as an annular eclipse and the rest of the path as a narrow total solar eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A hybrid solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's in sunrise and sunset, but at Greatest Eclipse the Moon's apparent diameter is larger than the Sun's.
In this particular case the eclipse path starts out as annular and ends as total.
It was the 23rd eclipse of the 143rd Saros cycle, which began with a partial eclipse on March 7, 1617, and will conclude with a partial eclipse on April 23, 2897.
Totality was visible from the northern Atlantic Ocean (east of Florida) to Africa (Gabon (landfall), R. Congo, DR Congo, Uganda, South Sudan, Kenya, Ethiopia, Somalia), with a maximum duration of totality of 1 minute and 39 seconds, visible from the Atlantic Ocean south of Ivory Coast and Ghana. [4]
Places with partial darkening were the Eastern coast of North America, southern Greenland, Bermuda, the Caribbean islands, Costa Rica, Panama, Northern South America, almost all the African continent, the Iberian Peninsula, Italy, Greece, Malta, Southern Russia, the Caucasus, Turkey and the Middle East.
This solar eclipse happened simultaneously with the 2013 Abu Dhabi Grand Prix, and it was possible to observe a partial solar eclipse in Abu Dhabi before the sunset while the F1 race took place, as shown briefly during its broadcast. [5]
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [6]
The partial solar eclipses on January 4, 2011 and July 1, 2011 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 2011 to 2014 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 Partial in Tromsø, Norway | June 1, 2011 Partial | 1.21300 | 123 Hinode XRT footage | November 25, 2011 Partial | −1.05359 | |
128 Annularity in Red Bluff, CA, USA | May 20, 2012 Annular | 0.48279 | 133 Totality in Mount Carbine, Queensland, Australia | November 13, 2012 Total | −0.37189 | |
138 Annularity in Churchills Head, Australia | May 10, 2013 Annular | −0.26937 | 143 Partial in Libreville, Gabon | November 3, 2013 Hybrid | 0.32715 | |
148 Partial in Adelaide, Australia | April 29, 2014 Annular (non-central) | −0.99996 | 153 Partial in Minneapolis, MN, USA | October 23, 2014 Partial | 1.09078 |
This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit. [7]
Series members 12–33 occur between 1801 and 2200: | ||
---|---|---|
12 | 13 | 14 |
July 6, 1815 | July 17, 1833 | July 28, 1851 |
15 | 16 | 17 |
August 7, 1869 | August 19, 1887 | August 30, 1905 |
18 | 19 | 20 |
September 10, 1923 | September 21, 1941 | October 2, 1959 |
21 | 22 | 23 |
October 12, 1977 | October 24, 1995 | November 3, 2013 |
24 | 25 | 26 |
November 14, 2031 | November 25, 2049 | December 6, 2067 |
27 | 28 | 29 |
December 16, 2085 | December 29, 2103 | January 8, 2122 |
30 | 31 | 32 |
January 20, 2140 | January 30, 2158 | February 10, 2176 |
33 | ||
February 21, 2194 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
20 eclipse events between June 10, 1964 and August 21, 2036 | ||||
---|---|---|---|---|
June 10–11 | March 28–29 | January 14–16 | November 3 | August 21–22 |
117 | 119 | 121 | 123 | 125 |
June 10, 1964 | March 28, 1968 | January 16, 1972 | November 3, 1975 | August 22, 1979 |
127 | 129 | 131 | 133 | 135 |
June 11, 1983 | March 29, 1987 | January 15, 1991 | November 3, 1994 | August 22, 1998 |
137 | 139 | 141 | 143 | 145 |
June 10, 2002 | March 29, 2006 | January 15, 2010 | November 3, 2013 | August 21, 2017 |
147 | 149 | 151 | 153 | 155 |
June 10, 2021 | March 29, 2025 | January 14, 2029 | November 3, 2032 | August 21, 2036 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
June 16, 1806 (Saros 124) | May 16, 1817 (Saros 125) | April 14, 1828 (Saros 126) | March 15, 1839 (Saros 127) | February 12, 1850 (Saros 128) |
January 11, 1861 (Saros 129) | December 12, 1871 (Saros 130) | November 10, 1882 (Saros 131) | October 9, 1893 (Saros 132) | September 9, 1904 (Saros 133) |
August 10, 1915 (Saros 134) | July 9, 1926 (Saros 135) | June 8, 1937 (Saros 136) | May 9, 1948 (Saros 137) | April 8, 1959 (Saros 138) |
March 7, 1970 (Saros 139) | February 4, 1981 (Saros 140) | January 4, 1992 (Saros 141) | December 4, 2002 (Saros 142) | November 3, 2013 (Saros 143) |
October 2, 2024 (Saros 144) | September 2, 2035 (Saros 145) | August 2, 2046 (Saros 146) | July 1, 2057 (Saros 147) | May 31, 2068 (Saros 148) |
May 1, 2079 (Saros 149) | March 31, 2090 (Saros 150) | February 28, 2101 (Saros 151) | January 29, 2112 (Saros 152) | December 28, 2122 (Saros 153) |
November 26, 2133 (Saros 154) | October 26, 2144 (Saros 155) | September 26, 2155 (Saros 156) | August 25, 2166 (Saros 157) | July 25, 2177 (Saros 158) |
June 24, 2188 (Saros 159) | May 24, 2199 (Saros 160) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
March 24, 1811 (Saros 136) | March 4, 1840 (Saros 137) | February 11, 1869 (Saros 138) |
January 22, 1898 (Saros 139) | January 3, 1927 (Saros 140) | December 14, 1955 (Saros 141) |
November 22, 1984 (Saros 142) | November 3, 2013 (Saros 143) | October 14, 2042 (Saros 144) |
September 23, 2071 (Saros 145) | September 4, 2100 (Saros 146) | August 15, 2129 (Saros 147) |
July 25, 2158 (Saros 148) | July 6, 2187 (Saros 149) |
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor in southern Africa, the Indian Ocean and southern Australia. A partial eclipse was seen from the much broader path of the Moon's penumbra, including most of Africa and Australia. During the sunset after the eclipse many observers in Australia saw numerous and unusual forms of a green flash.
An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, October 3, 2005, with a magnitude of 0.958. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 4.8 days after apogee, the Moon's apparent diameter was smaller. It was visible from a narrow corridor through the Iberian peninsula and Africa and Brazil. A partial eclipse was seen from the much broader path of the Moon's penumbra, including all of Europe, Africa and southwestern Asia. The Sun was 96% covered in a moderate annular eclipse, lasting 4 minutes and 32 seconds and covering a broad path up to 162 km wide. The next solar eclipse in Africa occurred just 6 months later.
A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, July 11, 2010, with a magnitude of 1.058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, April 29, 2014, with a magnitude of 0.9868. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The center of the Moon's shadow missed the Earth's South Pole, but the partial eclipse was visible from parts of Antarctica and Australia, and an annular eclipse was visible from a small part of Antarctica.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, March 19, 2007, with a magnitude of 0.8756. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, September 11, 2007, with a magnitude of 0.7507. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon’s ascending node of orbit on Friday, November 25, 2011, with a magnitude of 0.9047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 23, 2014, with a magnitude of 0.8114. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. Occurring only 5.7 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 1, 2016, with a magnitude of 0.9736. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. In this case, annularity was observed in Gabon, Congo, Democratic Republic of the Congo, Tanzania, Mozambique, Madagascar, and Réunion.
A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 15, 2018, with a magnitude of 0.5991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, September 3, 2081, with a magnitude of 1.072. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will begin at the Atlantic Ocean, off European mainland at 07:26:49 UTC and will end at Indonesian island of Java at 10:43:03 UTC.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, September 2, 1997, with a magnitude of 0.8988. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, May 30, 1984, with a magnitude of 0.998. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Mexico, the United States, Azores Islands, Morocco and Algeria. It was the first annular solar eclipse visible in the US in 33 years. The Moon's apparent diameter was near the average diameter because it occurred 6.7 days after apogee and 7.8 days before perigee.
A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 23, 1976, with a magnitude of 1.0572. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This total solar eclipse began at sunrise in Tanzania near the border with Burundi, with the path of totality passing just north of the large Tanzanian city of Dar es Salaam. It then crossed the Indian Ocean, passing St. Pierre Island, Providence Atoll and Farquhar Atoll of Seychelles before making landfall in southeastern Australia. The largest city that saw totality was Melbourne. After leaving the Australian mainland, the path of totality left the Earth's surface just north of the north island of New Zealand.
A hybrid solar eclipse occurred at the Moon’s ascending node of orbit on Thursday, April 20, 2023, with a magnitude of 1.0132. A solar eclipse occurs when the Moon passes between Earth and the Sun thereby totally or partly obscuring the Sun for a viewer on Earth. A hybrid solar eclipse is a rare type of solar eclipse that changes its appearance from annular to total and back as the Moon's shadow moves across the Earth's surface. Totality occurs between the annularity paths across the surface of the Earth, with the partial solar eclipse visible over a surrounding region thousands of kilometers wide. Hybrid solar eclipses are extremely rare, occurring in only 3.1% of solar eclipses in the 21st century.
A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, April 9, 2043, with a magnitude of 1.0095. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 15, 2077, with a magnitude of 0.9371. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partially obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross North America and South America. This will be the 47th solar eclipse of Saros cycle 134. A small annular eclipse will cover only 93.71% of the Sun in a very broad path, 262 km wide at maximum, and will last 7 minutes and 54 seconds. Occurring only 4 days after apogee, the Moon's apparent diameter is smaller.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 23, 1908, with a magnitude of 1.0024. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Annularity was visible from Chile, Argentina, Uruguay and southern Brazil, while totality was visible only from southern Atlantic Ocean with no land.
A total solar eclipse occurred at the Moon's ascending node of orbit on Monday, April 28, 1930, with a magnitude of 1.0003. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.