Solar eclipse of May 10, 1994

Last updated
Solar eclipse of May 10, 1994
Solar Eclipse 1994 (7160293094).jpg
Partial from Bismarck, North Dakota, USA
SE1994May10A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.4077
Magnitude 0.9431
Maximum eclipse
Duration373 s (6 min 13 s)
Coordinates 41°30′N84°06′W / 41.5°N 84.1°W / 41.5; -84.1
Max. width of band230 km (140 mi)
Times (UTC)
Greatest eclipse17:12:27
References
Saros 128 (57 of 73)
Catalog # (SE5000) 9495

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, May 10, 1994, with a magnitude of 0.9431. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The eclipse was visible over a wide swath of North America, from Baja California across the Midwest of the United States up through Ontario and Nova Scotia in Canada. Occurring only 1.6 days after apogee (on Monday, May 9, 1994, at 02:18 UTC or Sunday, May 8, 1994, at 22:18 EDT or 19:18 PDT), the moon's apparent diameter was smaller than the sun. This solar eclipse belonged to Saros series 128.

Contents

The path of annularity crossed four states of Mexico (Baja California Sur, Baja California, Sonora and Chihuahua), the United States, the Canadian provinces of Ontario, Nova Scotia and the southeastern tip of Quebec, Azores Islands except Santa Maria Island, and part of Morocco including the capital city Rabat. Niagara Falls was also covered by the path of annularity.

The eclipse reached its moment of "greatest eclipse" in the United States near Wauseon, Ohio, about 35 miles west of Toledo, Ohio.

The Columbus Crew were originally named the "Columbus Eclipse" in their Major League Soccer bid in honor of the event. [1]

Images

SE1994May10A.gif

Eclipses in 1994

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 128

Inex

Triad

Solar eclipses of 1993–1996

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [2]

Solar eclipse series sets from 1993 to 1996
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 May 21, 1993
SE1993May21P.png
Partial
1.1372123 November 13, 1993
SE1993Nov13P.png
Partial
−1.0411
128
Solar Eclipse 1994 (7160293094).jpg
Partial in Bismarck, ND, USA
May 10, 1994
SE1994May10A.png
Annular
0.4077133
Diamond Ring, Total Solar Eclipse, Bolivia, 1994 (3183977692).jpg
Totality in Bolivia
November 3, 1994
SE1994Nov03T.png
Total
−0.3522
138 April 29, 1995
SE1995Apr29A.png
Annular
−0.3382143
Hao WLCC 941103.jpg
Totality in Dundlod, India
October 24, 1995
SE1995Oct24T.png
Total
0.3518
148 April 17, 1996
SE1996Apr17P.png
Partial
−1.058153 October 12, 1996
SE1996Oct12P.png
Partial
1.1227

Saros 128

This eclipse is a part of Saros series 128, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 29, 984 AD. It contains total eclipses from May 16, 1417 through June 18, 1471; hybrid eclipses from June 28, 1489 through July 31, 1543; and annular eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 27 at 1 minutes, 45 seconds on June 7, 1453, and the longest duration of annularity was produced by member 48 at 8 minutes, 35 seconds on February 1, 1832. All eclipses in this series occur at the Moon’s descending node of orbit. [3]

Series members 47–68 occur between 1801 and 2200:
474849
SE1814Jan21A.gif
January 21, 1814
SE1832Feb01A.gif
February 1, 1832
SE1850Feb12A.gif
February 12, 1850
505152
SE1868Feb23A.gif
February 23, 1868
SE1886Mar05A.gif
March 5, 1886
SE1904Mar17A.png
March 17, 1904
535455
SE1922Mar28A.png
March 28, 1922
SE1940Apr07A.png
April 7, 1940
SE1958Apr19A.png
April 19, 1958
565758
SE1976Apr29A.png
April 29, 1976
SE1994May10A.png
May 10, 1994
SE2012May20A.png
May 20, 2012
596061
SE2030Jun01A.png
June 1, 2030
SE2048Jun11A.png
June 11, 2048
SE2066Jun22A.png
June 22, 2066
626364
SE2084Jul03A.png
July 3, 2084
SE2102Jul15A.png
July 15, 2102
SE2120Jul25A.png
July 25, 2120
656667
Saros128 65van73 SE2138Aug05P.jpg
August 5, 2138
Saros128 66van73 SE2156Aug16P.jpg
August 16, 2156
Saros128 67van73 SE2174Aug27P.jpg
August 27, 2174
68
Saros128 68van73 SE2192Sep06P.jpg
September 6, 2192

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 22, 1971 and July 22, 2047
July 22May 9–11February 26–27December 14–15October 2–3
116118120122124
SE1971Jul22P.png
July 22, 1971
SE1975May11P.png
May 11, 1975
SE1979Feb26T.png
February 26, 1979
SE1982Dec15P.png
December 15, 1982
SE1986Oct03H.png
October 3, 1986
126128130132134
SE1990Jul22T.png
July 22, 1990
SE1994May10A.png
May 10, 1994
SE1998Feb26T.png
February 26, 1998
SE2001Dec14A.png
December 14, 2001
SE2005Oct03A.png
October 3, 2005
136138140142144
SE2009Jul22T.png
July 22, 2009
SE2013May10A.png
May 10, 2013
SE2017Feb26A.png
February 26, 2017
SE2020Dec14T.png
December 14, 2020
SE2024Oct02A.png
October 2, 2024
146148150152154
SE2028Jul22T.png
July 22, 2028
SE2032May09A.png
May 9, 2032
SE2036Feb27P.png
February 27, 2036
SE2039Dec15T.png
December 15, 2039
SE2043Oct03A.png
October 3, 2043
156
SE2047Jul22P.png
July 22, 2047

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1808Oct19P.gif
October 19, 1808
(Saros 111)
SE1819Sep19Pe.gif
September 19, 1819
(Saros 112)
SE1830Aug18P.gif
August 18, 1830
(Saros 113)
SE1841Jul18P.gif
July 18, 1841
(Saros 114)
SE1852Jun17P.gif
June 17, 1852
(Saros 115)
SE1863May17P.gif
May 17, 1863
(Saros 116)
SE1874Apr16T.png
April 16, 1874
(Saros 117)
SE1885Mar16A.gif
March 16, 1885
(Saros 118)
SE1896Feb13A.png
February 13, 1896
(Saros 119)
SE1907Jan14T.png
January 14, 1907
(Saros 120)
SE1917Dec14A.png
December 14, 1917
(Saros 121)
SE1928Nov12P.png
November 12, 1928
(Saros 122)
SE1939Oct12T.png
October 12, 1939
(Saros 123)
SE1950Sep12T.png
September 12, 1950
(Saros 124)
SE1961Aug11A.png
August 11, 1961
(Saros 125)
SE1972Jul10T.png
July 10, 1972
(Saros 126)
SE1983Jun11T.png
June 11, 1983
(Saros 127)
SE1994May10A.png
May 10, 1994
(Saros 128)
SE2005Apr08H.png
April 8, 2005
(Saros 129)
SE2016Mar09T.png
March 9, 2016
(Saros 130)
SE2027Feb06A.png
February 6, 2027
(Saros 131)
SE2038Jan05A.png
January 5, 2038
(Saros 132)
SE2048Dec05T.png
December 5, 2048
(Saros 133)
SE2059Nov05A.png
November 5, 2059
(Saros 134)
SE2070Oct04A.png
October 4, 2070
(Saros 135)
SE2081Sep03T.png
September 3, 2081
(Saros 136)
SE2092Aug03A.png
August 3, 2092
(Saros 137)
SE2103Jul04A.png
July 4, 2103
(Saros 138)
SE2114Jun03T.png
June 3, 2114
(Saros 139)
SE2125May03A.png
May 3, 2125
(Saros 140)
SE2136Apr01A.png
April 1, 2136
(Saros 141)
SE2147Mar02T.png
March 2, 2147
(Saros 142)
SE2158Jan30A.png
January 30, 2158
(Saros 143)
SE2168Dec29A.png
December 29, 2168
(Saros 144)
SE2179Nov28T.png
November 28, 2179
(Saros 145)
SE2190Oct29H.png
October 29, 2190
(Saros 146)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1820Sep07A.png
September 7, 1820
(Saros 122)
SE1849Aug18T.gif
August 18, 1849
(Saros 123)
SE1878Jul29T.png
July 29, 1878
(Saros 124)
SE1907Jul10A.png
July 10, 1907
(Saros 125)
SE1936Jun19T.png
June 19, 1936
(Saros 126)
SE1965May30T.png
May 30, 1965
(Saros 127)
SE1994May10A.png
May 10, 1994
(Saros 128)
SE2023Apr20H.png
April 20, 2023
(Saros 129)
SE2052Mar30T.png
March 30, 2052
(Saros 130)
SE2081Mar10A.png
March 10, 2081
(Saros 131)
SE2110Feb18A.png
February 18, 2110
(Saros 132)
SE2139Jan30T.png
January 30, 2139
(Saros 133)
SE2168Jan10A.png
January 10, 2168
(Saros 134)
SE2196Dec19A.png
December 19, 2196
(Saros 135)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 22, 2006</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, September 22, 2006, with a magnitude of 0.9352. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity of this eclipse passed through Guyana, Suriname, French Guiana, the northern tip of Roraima and Amapá of Brazil, and the southern Atlantic.

<span class="mw-page-title-main">Solar eclipse of December 4, 1983</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, December 4, 1983, with a magnitude of 0.9666. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Cape Verde, Annobón Island of Equatorial Guinea, Gabon, the People's Republic of Congo, Zaire, northern Uganda, southern Sudan, northwestern Kenya, Ethiopia and Somalia. The Sun's altitude was 66°. Occurring 6.5 days before apogee, the Moon's apparent diameter was near the average diameter.

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 2, 2024</span> Annular eclipse

An annular solar eclipse will occur at the Moon’s descending node of orbit on Wednesday, October 2, 2024, with a magnitude of 0.9326. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 11, 1988</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 11, 1988, with a magnitude of 0.9377. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in southeastern Somalia, the Indian Ocean and Macquarie Island of Australia.

<span class="mw-page-title-main">Solar eclipse of April 18, 1977</span> Annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, April 18, 1977, with a magnitude of 0.9449. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in South West Africa, Angola, Zambia, southeastern Zaire, northern Malawi, Tanzania, Seychelles and the whole British Indian Ocean Territory.

<span class="mw-page-title-main">Solar eclipse of January 25, 1963</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, January 25, 1963, with a magnitude of 0.9951. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity crossed Chile, Argentina, South Africa, southern Basutoland and Malagasy Republic. Occurring 3.7 days before perigee, the Moon's apparent diameter was larger. The moon was 374,860 km from the Earth.

<span class="mw-page-title-main">Solar eclipse of November 15, 2077</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 15, 2077, with a magnitude of 0.9371. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partially obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross North America and South America. This will be the 47th solar eclipse of Saros cycle 134. A small annular eclipse will cover only 93.71% of the Sun in a very broad path, 262 km wide at maximum, and will last 7 minutes and 54 seconds. Occurring only 4 days after apogee, the Moon's apparent diameter is smaller.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 20, 2053</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 21, 2099</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 21, 2099, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.

<span class="mw-page-title-main">Solar eclipse of July 3, 2084</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, July 3, 2084, with a magnitude of 0.9421. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1934</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 2, 1937</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, December 2, 1937, with a magnitude of 0.9184. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Ogasawara, Tokyo and South Seas Mandate in Japan, and Gilbert and Ellice Islands.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

<span class="mw-page-title-main">Solar eclipse of April 19, 1939</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, April 19, 1939, with a magnitude of 0.9731. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References

  1. Boese, Chandler (May 10, 2021). "Why is Columbus' MLS soccer team called the Crew?". The Columbus Dispatch . Retrieved July 5, 2021.
  2. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. "NASA - Catalog of Solar Eclipses of Saros 128". eclipse.gsfc.nasa.gov.