Solar eclipse of February 3, 1935

Last updated
Solar eclipse of February 3, 1935
SE1935Feb03P.png
Map
Type of eclipse
NaturePartial
Gamma 1.1438
Magnitude 0.739
Maximum eclipse
Coordinates 62°30′N115°24′W / 62.5°N 115.4°W / 62.5; -115.4
Times (UTC)
Greatest eclipse16:16:20
References
Saros 149 (16 of 71)
Catalog # (SE5000) 9362

A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, February 3, 1935, [1] with a magnitude of 0.739. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

This was the second of five solar eclipses in 1935, with the others occurring on January 5, June 30, July 30, and December 25. The next time this will occur is 2206.

A partial eclipse was visible for most of North America.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

February 3, 1935 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1935 February 03 at 14:30:31.4 UTC
Greatest Eclipse1935 February 03 at 16:16:20.2 UTC
Ecliptic Conjunction1935 February 03 at 16:27:42.1 UTC
Equatorial Conjunction1935 February 03 at 17:04:33.7 UTC
Last Penumbral External Contact1935 February 03 at 18:01:48.2 UTC
February 3, 1935 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.73901
Eclipse Obscuration0.67784
Gamma1.14380
Sun Right Ascension21h05m33.3s
Sun Declination-16°39'23.6"
Sun Semi-Diameter16'13.5"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension21h03m43.1s
Moon Declination-15°34'30.3"
Moon Semi-Diameter16'44.0"
Moon Equatorial Horizontal Parallax1°01'24.9"
ΔT23.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of January–February 1935
January 5
Ascending node (new moon)
January 19
Descending node (full moon)
February 3
Ascending node (new moon)
SE1935Jan05P.png Lunar eclipse chart close-1935Jan19.png SE1935Feb03P.png
Partial solar eclipse
Solar Saros 111
Total lunar eclipse
Lunar Saros 123
Partial solar eclipse
Solar Saros 149

Eclipses in 1935

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 149

Inex

Triad

Solar eclipses of 1931–1935

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on April 18, 1931 and October 11, 1931 occur in the previous lunar year eclipse set, and the solar eclipses on January 5, 1935 (partial), June 30, 1935 (partial), and December 25, 1935 (annular) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1931 to 1935
Descending node Ascending node
SarosMapGammaSarosMapGamma
114 September 12, 1931
SE1931Sep12P.png
Partial
1.506119 March 7, 1932
SE1932Mar07A.png
Annular
−0.9673
124 August 31, 1932
SE1932Aug31T.png
Total
0.8307129 February 24, 1933
SE1933Feb24A.png
Annular
−0.2191
134 August 21, 1933
SE1933Aug21A.png
Annular
0.0869139 February 14, 1934
SE1934Feb14T.png
Total
0.4868
144 August 10, 1934
SE1934Aug10A.png
Annular
−0.689149 February 3, 1935
SE1935Feb03P.png
Partial
1.1438
154 July 30, 1935
SE1935Jul30P.png
Partial
−1.4259

Saros 149

This eclipse is a part of Saros series 149, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 21, 1664. It contains total eclipses from April 9, 2043 through October 2, 2331; hybrid eclipses from October 13, 2349 through November 3, 2385; and annular eclipses from November 15, 2403 through July 13, 2800. The series ends at member 71 as a partial eclipse on September 28, 2926. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 31 at 4 minutes, 10 seconds on July 17, 2205, and the longest duration of annularity will be produced by member 62 at 5 minutes, 6 seconds on June 21, 2764. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]

Series members 9–30 occur between 1801 and 2200:
91011
SE1808Nov18P.gif
November 18, 1808
SE1826Nov29P.gif
November 29, 1826
SE1844Dec09P.gif
December 9, 1844
121314
SE1862Dec21P.gif
December 21, 1862
SE1880Dec31P.gif
December 31, 1880
SE1899Jan11P.gif
January 11, 1899
151617
SE1917Jan23P.png
January 23, 1917
SE1935Feb03P.png
February 3, 1935
SE1953Feb14P.png
February 14, 1953
181920
SE1971Feb25P.png
February 25, 1971
SE1989Mar07P.png
March 7, 1989
SE2007Mar19P.png
March 19, 2007
212223
SE2025Mar29P.png
March 29, 2025
SE2043Apr09T.png
April 9, 2043
SE2061Apr20T.png
April 20, 2061
242526
SE2079May01T.png
May 1, 2079
SE2097May11T.png
May 11, 2097
SE2115May24T.png
May 24, 2115
272829
SE2133Jun03T.png
June 3, 2133
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
SE2169Jun25T.png
June 25, 2169
30
Saros149 30van71 SE2187Jul06T.jpg
July 6, 2187

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between February 3, 1859 and June 29, 1946
February 1–3November 21–22September 8–10June 28–29April 16–18
109111113115117
SE1859Feb03P.png
February 3, 1859
SE1862Nov21P.gif
November 21, 1862
SE1870Jun28P.gif
June 28, 1870
SE1874Apr16T.gif
April 16, 1874
119121123125127
SE1878Feb02A.gif
February 2, 1878
SE1881Nov21A.gif
November 21, 1881
SE1885Sep08T.png
September 8, 1885
SE1889Jun28A.png
June 28, 1889
SE1893Apr16T.png
April 16, 1893
129131133135137
SE1897Feb01A.gif
February 1, 1897
SE1900Nov22A.gif
November 22, 1900
SE1904Sep09T.png
September 9, 1904
SE1908Jun28A.png
June 28, 1908
SE1912Apr17H.png
April 17, 1912
139141143145147
SE1916Feb03T.png
February 3, 1916
SE1919Nov22A.png
November 22, 1919
SE1923Sep10T.png
September 10, 1923
SE1927Jun29T.png
June 29, 1927
SE1931Apr18P.png
April 18, 1931
149151153155
SE1935Feb03P.png
February 3, 1935
SE1938Nov21P.png
November 21, 1938
SE1942Sep10P.png
September 10, 1942
SE1946Jun29P.png
June 29, 1946

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipse on October 24, 2098 (part of Saros 164) is also a part of this series but is not included in the table below.

Series members between 1801 and 2011
SE1804Feb11H.png
February 11, 1804
(Saros 137)
SE1815Jan10A.png
January 10, 1815
(Saros 138)
SE1825Dec09H.png
December 9, 1825
(Saros 139)
SE1836Nov09T.png
November 9, 1836
(Saros 140)
SE1847Oct09A.png
October 9, 1847
(Saros 141)
SE1858Sep07T.png
September 7, 1858
(Saros 142)
SE1869Aug07T.png
August 7, 1869
(Saros 143)
SE1880Jul07A.png
July 7, 1880
(Saros 144)
SE1891Jun06A.png
June 6, 1891
(Saros 145)
SE1902May07P.png
May 7, 1902
(Saros 146)
SE1913Apr06P.png
April 6, 1913
(Saros 147)
SE1924Mar05P.png
March 5, 1924
(Saros 148)
SE1935Feb03P.png
February 3, 1935
(Saros 149)
SE1946Jan03P.png
January 3, 1946
(Saros 150)
SE1956Dec02P.png
December 2, 1956
(Saros 151)
SE1967Nov02T.png
November 2, 1967
(Saros 152)
SE1978Oct02P.png
October 2, 1978
(Saros 153)
SE1989Aug31P.png
August 31, 1989
(Saros 154)
SE2000Jul31P.png
July 31, 2000
(Saros 155)
SE2011Jul01P.png
July 1, 2011
(Saros 156)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1819Apr24P.png
April 24, 1819
(Saros 145)
SE1848Apr03P.png
April 3, 1848
(Saros 146)
SE1877Mar15P.gif
March 15, 1877
(Saros 147)
SE1906Feb23P.png
February 23, 1906
(Saros 148)
SE1935Feb03P.png
February 3, 1935
(Saros 149)
SE1964Jan14P.png
January 14, 1964
(Saros 150)
SE1992Dec24P.png
December 24, 1992
(Saros 151)
SE2021Dec04T.png
December 4, 2021
(Saros 152)
SE2050Nov14P.png
November 14, 2050
(Saros 153)
SE2079Oct24A.png
October 24, 2079
(Saros 154)
Saros155 11van71 SE2108Oct05T.jpg
October 5, 2108
(Saros 155)
Saros156 08van69 SE2137Sep15P.jpg
September 15, 2137
(Saros 156)
Saros157 07van70 SE2166Aug25A.jpg
August 25, 2166
(Saros 157)
Saros158 08van70 SE2195Aug05T.jpg
August 5, 2195
(Saros 158)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of June 11, 2048</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, June 11, 2048, with a magnitude of 0.9441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 23, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 23, 2036, with a magnitude of 0.1991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 9, 1986</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986, with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 14, 1964</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Tuesday, January 14, 1964, with a magnitude of 0.5591. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. Partial solar eclipses occur in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 14, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, February 14, 1953, with a magnitude of 0.7596. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 20, 1952</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 20, 1952, with a magnitude of 0.942. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru including the capital city Lima, northeastern Chile, Bolivia including the constitutional capital Sucre and seat of government La Paz, Argentina, Paraguay, southern Brazil and Uruguay.

<span class="mw-page-title-main">Solar eclipse of February 28, 2044</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 28, 2044, with a magnitude of 0.96. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 27, 2055</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 27, 2055, with a magnitude of 0.6932. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It will be visible across North America.

<span class="mw-page-title-main">Solar eclipse of December 27, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 27, 2065, with a magnitude of 0.8769. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 22, 2066</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 22, 2066, with a magnitude of 0.9435. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1934</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 1.4 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of December 25, 1935</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, December 25, 1935, with a magnitude of 0.9752. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.7 days after apogee and 4.8 days before perigee.

<span class="mw-page-title-main">Solar eclipse of October 26, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, October 26, 2087, with a magnitude of 0.4696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 2, 1937</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Thursday, December 2 and Friday, December 3, 1937, with a magnitude of 0.9184. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 18 hours before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of November 23, 1946</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, November 23, 1946, with a magnitude of 0.7758. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 3, 1946</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, January 3, 1946, with a magnitude of 0.5529. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 12, 1931</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 12, 1931, with a magnitude of 0.0471. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 7, 1932</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, March 7, 1932, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.6 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "February 3, 1935 Partial Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. "Partial Solar Eclipse of 1935 Feb 03". EclipseWise.com. Retrieved 3 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 149". eclipse.gsfc.nasa.gov.