Solar eclipse of March 20, 2015 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | 0.9454 |
Magnitude | 1.0445 |
Maximum eclipse | |
Duration | 167 s (2 min 47 s) |
Coordinates | 64°24′N6°36′W / 64.4°N 6.6°W |
Max. width of band | 463 km (288 mi) |
Times (UTC) | |
Greatest eclipse | 9:46:47 |
References | |
Saros | 120 (61 of 71) |
Catalog # (SE5000) | 9541 |
A total solar eclipse occurred at the Moon's descending node of orbit on Friday, March 20, 2015, [1] with a magnitude of 1.0445. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with a partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 14 hours after perigee (on March 19, 2015, at 19:40 UTC), the Moon's apparent diameter was larger. [2]
Totality was visible in the Faroe Islands and Svalbard. A partial eclipse was visible for parts of Greenland, Europe, North Africa, Central Asia, and western Russia. This total solar eclipse is notable in that the path of totality passed over the North Pole.
The longest duration of totality was 2 minutes and 47 seconds off the coast of the Faroe Islands. It was the last total solar eclipse visible in Europe until the eclipse of August 12, 2026. [3]
The solar eclipse began at 08:30 GMT in northwest Europe, and moved towards the northeast, but was still in northern Europe. It was most visible from the North Atlantic and Arctic Oceans, Greenland, Iceland, Ireland, the United Kingdom, Faroe Islands, northern Norway and Murmansk Oblast. The shadow began its pass off the south coast of Greenland. It then moved to the northeast, passing between Iceland and the United Kingdom before moving over the Faroe Islands and the northernmost islands of Norway. The shadow of the eclipse was visible in varying degrees all over Europe. [4] For example, London experienced an 86.8% partial solar eclipse while points north of the Faroe Islands in the Norwegian Sea saw a complete solar eclipse. [5] Three chartered airliners flew above the clouds, giving passengers a slightly prolonged view. [6]
The eclipse was observed at radio frequencies at the Metsähovi Radio Observatory, Finland, where a partial eclipse was seen. [7] The eclipse was also observed by meteorological satellite Meteosat-10. [8] [9]
This section needs to be updated.(May 2017) |
The European Union has a solar power output of about 90 gigawatts and production could have been temporarily decreased by up to 34 GW of that dependent on the clarity of the sky. In actuality the dip was less than expected, with a 13 GW drop in Germany happening due to overcast skies. [10] [11] This was the first time that an eclipse had a significant impact on the power system, and the electricity sector took measures to mitigate the impact. The power gradient (change in power) may be −400 MW/minute and +700 MW/minute. Places in Netherlands, Belgium and Denmark were 80-85% obscured. [12] [13] [14] The temperature drops varied greatly across Europe, with most areas having an insignificant drop in temperature due to the overcast weather, while others, like Scotland, Wales, and Iceland received a drop of 2-4°C. These areas were not obscured by cloud cover during the eclipse which may have led to the drop in temperature. Wind speed in the UK dropped by ~9%. [15]
In addition to the eclipse, 20 March 2015 was also the day of the March equinox (also known as the spring or vernal equinox in the Northern Hemisphere). In addition, six supermoons were expected for 2015. The supermoon on 20 March 2015 was the third of the year; however, it was a new moon (near side facing away from the sun), and only its shadow was visible. [16]
At greatest eclipse, the Sun was at its zenith less than 24 kilometres (15 mi) south of the Equator. Greatest eclipse occurred at 09:45:39 UTC of Friday, March 20, 2015, while March Equinox occurred at 22:45:09 UTC, just under 13 hours after the greatest eclipse (Greatest eclipse occurred in winter, 13 hours before spring).
Proponents of the Blood Moon Prophecy, such as Bob O'Dell [17] also pointed out that 20 March 2015 was also a significant day on the Jewish and Biblical calendar. That evening was the onset of the Hebrew month of Nisan, the first month in the Biblical calendar year. Furthermore, the path of the total eclipse over the North Pole [18] was a highly symbolic location infusing the day with both great natural significance and profound religious meaning according to O'Dell. Due to the significance of the eclipse, a global prayer event in Jerusalem was organized that day. [19]
The event was visible as a partial eclipse all across Europe including: Norway, Sweden, Denmark, the United Kingdom, [20] Ireland, [21] Portugal, France, [22] Germany, [23] Poland, [24] Czech Republic, Slovakia, Hungary, Austria, Italy, Montenegro, Finland, Western Russia, and Ukraine.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [25]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2015 March 20 at 07:41:59.5 UTC |
First Umbral External Contact | 2015 March 20 at 09:10:40.3 UTC |
First Central Line | 2015 March 20 at 09:13:50.9 UTC |
First Umbral Internal Contact | 2015 March 20 at 09:17:19.8 UTC |
Ecliptic Conjunction | 2015 March 20 at 09:37:18.1 UTC |
Greatest Duration | 2015 March 20 at 09:46:24.2 UTC |
Greatest Eclipse | 2015 March 20 at 09:46:46.8 UTC |
Equatorial Conjunction | 2015 March 20 at 10:18:14.1 UTC |
Last Umbral Internal Contact | 2015 March 20 at 10:15:51.3 UTC |
Last Central Line | 2015 March 20 at 10:19:19.7 UTC |
Last Umbral External Contact | 2015 March 20 at 10:22:29.9 UTC |
Last Penumbral External Contact | 2015 March 20 at 11:51:20.4 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 1.04455 |
Eclipse Obscuration | 1.09109 |
Gamma | 0.94536 |
Sun Right Ascension | 23h58m01.5s |
Sun Declination | -00°12'50.4" |
Sun Semi-Diameter | 16'03.7" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 23h56m50.5s |
Moon Declination | +00°42'08.7" |
Moon Semi-Diameter | 16'41.6" |
Moon Equatorial Horizontal Parallax | 1°01'15.8" |
ΔT | 67.7 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
March 20 Descending node (new moon) | April 4 Ascending node (full moon) |
---|---|
Total solar eclipse Solar Saros 120 | Total lunar eclipse Lunar Saros 132 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [26]
The partial solar eclipse on July 13, 2018 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 2015 to 2018 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
120 Totality in Longyearbyen, Svalbard | March 20, 2015 Total | 0.94536 | 125 Solar Dynamics Observatory | September 13, 2015 Partial | −1.10039 | |
130 Balikpapan, Indonesia | March 9, 2016 Total | 0.26092 | 135 Annularity in L'Étang-Salé, Réunion | September 1, 2016 Annular | −0.33301 | |
140 Partial from Buenos Aires, Argentina | February 26, 2017 Annular | −0.45780 | 145 Totality in Madras, OR, USA | August 21, 2017 Total | 0.43671 | |
150 Partial in Olivos, Buenos Aires, Argentina | February 15, 2018 Partial | −1.21163 | 155 Partial in Huittinen, Finland | August 11, 2018 Partial | 1.14758 |
This eclipse is a part of Saros series 120, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 27, 933 AD. It contains annular eclipses from August 11, 1059 through April 26, 1492; hybrid eclipses from May 8, 1510 through June 8, 1564; and total eclipses from June 20, 1582 through March 30, 2033. The series ends at member 71 as a partial eclipse on July 7, 2195. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 11 at 6 minutes, 24 seconds on September 11, 1113, and the longest duration of totality was produced by member 60 at 2 minutes, 50 seconds on March 9, 1997. All eclipses in this series occur at the Moon’s descending node of orbit. [27]
Series members 50–71 occur between 1801 and 2195: | ||
---|---|---|
50 | 51 | 52 |
November 19, 1816 | November 30, 1834 | December 11, 1852 |
53 | 54 | 55 |
December 22, 1870 | January 1, 1889 | January 14, 1907 |
56 | 57 | 58 |
January 24, 1925 | February 4, 1943 | February 15, 1961 |
59 | 60 | 61 |
February 26, 1979 | March 9, 1997 | March 20, 2015 |
62 | 63 | 64 |
March 30, 2033 | April 11, 2051 | April 21, 2069 |
65 | 66 | 67 |
May 2, 2087 | May 14, 2105 | May 25, 2123 |
68 | 69 | 70 |
June 4, 2141 | June 16, 2159 | June 26, 2177 |
71 | ||
July 7, 2195 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between June 1, 2011 and October 24, 2098 | ||||
---|---|---|---|---|
May 31–June 1 | March 19–20 | January 5–6 | October 24–25 | August 12–13 |
118 | 120 | 122 | 124 | 126 |
June 1, 2011 | March 20, 2015 | January 6, 2019 | October 25, 2022 | August 12, 2026 |
128 | 130 | 132 | 134 | 136 |
June 1, 2030 | March 20, 2034 | January 5, 2038 | October 25, 2041 | August 12, 2045 |
138 | 140 | 142 | 144 | 146 |
May 31, 2049 | March 20, 2053 | January 5, 2057 | October 24, 2060 | August 12, 2064 |
148 | 150 | 152 | 154 | 156 |
May 31, 2068 | March 19, 2072 | January 6, 2076 | October 24, 2079 | August 13, 2083 |
158 | 160 | 162 | 164 | |
June 1, 2087 | October 24, 2098 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on March 27, 1884 (part of Saros 108) and December 24, 1916 (part of Saros 111) are also a part of this series but are not included in the table below.
Series members between 1971 and 2200 | ||||
---|---|---|---|---|
July 22, 1971 (Saros 116) | June 21, 1982 (Saros 117) | May 21, 1993 (Saros 118) | April 19, 2004 (Saros 119) | March 20, 2015 (Saros 120) |
February 17, 2026 (Saros 121) | January 16, 2037 (Saros 122) | December 16, 2047 (Saros 123) | November 16, 2058 (Saros 124) | October 15, 2069 (Saros 125) |
September 13, 2080 (Saros 126) | August 15, 2091 (Saros 127) | July 15, 2102 (Saros 128) | June 13, 2113 (Saros 129) | May 14, 2124 (Saros 130) |
April 13, 2135 (Saros 131) | March 12, 2146 (Saros 132) | February 9, 2157 (Saros 133) | January 10, 2168 (Saros 134) | December 9, 2178 (Saros 135) |
November 8, 2189 (Saros 136) | October 9, 2200 (Saros 137) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
August 7, 1812 (Saros 113) | July 18, 1841 (Saros 114) | June 28, 1870 (Saros 115) |
June 8, 1899 (Saros 116) | May 19, 1928 (Saros 117) | April 30, 1957 (Saros 118) |
April 9, 1986 (Saros 119) | March 20, 2015 (Saros 120) | February 28, 2044 (Saros 121) |
February 7, 2073 (Saros 122) | January 19, 2102 (Saros 123) | December 30, 2130 (Saros 124) |
December 9, 2159 (Saros 125) | November 18, 2188 (Saros 126) |
A total solar eclipse occurred at the Moon’s ascending node of orbit on Wednesday, March 29, 2006, with a magnitude of 1.0515. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon’s ascending node of orbit on Wednesday, August 11, 1999, with a magnitude of 1.0286. A solar eclipse occurs when the moon passes between earth and the sun, thereby totally or partly obscuring the image of the sun for a viewer on earth. A total solar eclipse occurs when the moon's apparent diameter is larger than the sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.5 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit between Sunday, November 23 and Monday, November 24, 2003, with a magnitude of 1.0379. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 25 minutes before perigee, the Moon's apparent diameter was near its maximum. Perigee did occur just past the greatest point of this eclipse.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.25 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit between Tuesday, July 11 and Wednesday, July 12, 2010, with a magnitude of 1.058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Friday, August 1, 2008, with a magnitude of 1.0394. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days after perigee, the Moon's apparent diameter was larger.
An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, April 29, 2014, with a magnitude of 0.9868. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 6.2 days after perigee and 7.2 days before apogee.
A total solar eclipse occurred at the Moon's descending node of orbit between Tuesday, March 8 and Wednesday, March 9, 2016, with a magnitude of 1.045. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the Sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.25 days before perigee, the Moon's apparent diameter was larger.
A partial solar eclipse occurred at the Moon’s ascending node of orbit on Tuesday, January 4, 2011, with a magnitude of 0.8576. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 2, 2019, with a magnitude of 1.0459. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the Sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days before perigee, the Moon's apparent diameter was larger.
An annular solar eclipse occurred at the Moon's descending node of orbit between Thursday, May 9 and Friday, May 10, 2013, with a magnitude of 0.9544. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.6 days before apogee, the Moon's apparent diameter was smaller.
A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, November 3, 2013, with a magnitude of 1.0159. It was a hybrid event, a narrow total eclipse, and beginning as an annular eclipse and concluding as a total eclipse, in this particular case. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days before perigee, the Moon's apparent diameter was larger.
An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, February 26, 2017, with a magnitude of 0.9922. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.9 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, June 30, 1954, with a magnitude of 1.0357. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 26, 1998, with a magnitude of 1.0441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon’s ascending node of orbit on Thursday, April 20, 2023, with a magnitude of 1.0132. It was a hybrid event, a narrow total eclipse, and beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun thereby totally or partly obscuring the Sun for a viewer on Earth. A hybrid solar eclipse is a rare type of solar eclipse that changes its appearance from annular to total and back as the Moon's shadow moves across the Earth's surface. Totality occurs between the annularity paths across the surface of the Earth, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Hybrid solar eclipses are extremely rare, occurring in only 3.1% of solar eclipses in the 21st century. Occurring about 4.1 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit between Monday, September 11, 1950 and Tuesday, September 12, 1950, with a magnitude of 1.0182. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, May 1, 2079, with a magnitude of 1.0512. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.2 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, April 16, 1893, with a magnitude of 1.0556. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee, the Moon's apparent diameter was larger.