Solar eclipse of July 10, 1972 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | 0.6872 |
Magnitude | 1.0379 |
Maximum eclipse | |
Duration | 156 s (2 min 36 s) |
Coordinates | 63°30′N94°12′W / 63.5°N 94.2°W |
Max. width of band | 175 km (109 mi) |
Times (UTC) | |
Greatest eclipse | 19:46:38 |
References | |
Saros | 126 (45 of 72) |
Catalog # (SE5000) | 9448 |
A total solar eclipse occurred at the Moon's descending node of orbit on Monday, July 10, 1972, with a magnitude of 1.0379. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 2.9 days after perigee (on July 7, 1972), the Moon's diameter was relatively large.
It was visible as a total eclipse along a path of totality that began in Sea of Okhotsk and traversed the far eastern portions of the Soviet Union (which now belongs to Russia) on July 11 local time, northern Alaska in the United States, Northern Canada, eastern Quebec and the Canadian Maritimes on July 10 local time. A partial eclipse was visible over Siberia, Canada and the northern and eastern United States.
The eclipse was mostly seen on July 10, 1972, except for the Asian part of Soviet Union and Japanese island Hokkaido, where either a partial or a total eclipse was seen on July 11 local time, and part of the Soviet Union along the coast of Kara Sea, where a partial eclipse started on July 10, passing midnight and ended on July 11 due to the midnight sun.
A team of the Academy of Sciences of the Soviet Union observed the total solar eclipse in Russkaya Koshka, Magadan Oblast (now separated into Chukotka Autonomous Okrug) on the coast of Gulf of Anadyr. The weather condition was clear, and the team successfully took images of the corona and made polarization observations to study its structure and physical characteristics. [1] In Nova Scotia, Canada, the eclipse was clouded out and could not be observed. Besides that, 850 passengers boarded a cruise ship from New York City and saw a total eclipse successfully in North Atlantic Ocean. Many scientists also boarded the ship and did research, and some also gave classes in meteorology, oceanography, etc., which almost all passengers attended. [2] [3]
The eclipse is referenced in the lyrics of Carly Simon's 1972 hit song "You're So Vain." The subject of the song, after witnessing his racehorse win "naturally" at the Saratoga Race Course, flies his Learjet to Nova Scotia to see the eclipse; Simon uses the two phenomena as examples of how the subject seems to be "where (he) should be all the time." Simon released the song four months after the eclipse. [4]
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]
The partial solar eclipses on February 25, 1971 and August 20, 1971 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 1971 to 1974 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
116 | July 22, 1971 Partial | 1.513 | 121 | January 16, 1972 Annular | −0.9365 | |
126 | July 10, 1972 Total | 0.6872 | 131 | January 4, 1973 Annular | −0.2644 | |
136 | June 30, 1973 Total | −0.0785 | 141 | December 24, 1973 Annular | 0.4171 | |
146 | June 20, 1974 Total | −0.8239 | 151 | December 13, 1974 Partial | 1.0797 |
This eclipse is a part of Saros series 126, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 10, 1179. It contains annular eclipses from June 4, 1323 through April 4, 1810; hybrid eclipses from April 14, 1828 through May 6, 1864; and total eclipses from May 17, 1882 through August 23, 2044. The series ends at member 72 as a partial eclipse on May 3, 2459. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 11 at 6 minutes, 30 seconds on June 26, 1359, and the longest duration of totality was produced by member 45 at 2 minutes, 36 seconds on July 10, 1972. All eclipses in this series occur at the Moon’s descending node of orbit. [6]
Series members 36–57 occur between 1801 and 2200: | ||
---|---|---|
36 | 37 | 38 |
April 4, 1810 | April 14, 1828 | April 25, 1846 |
39 | 40 | 41 |
May 6, 1864 | May 17, 1882 | May 28, 1900 |
42 | 43 | 44 |
June 8, 1918 | June 19, 1936 | June 30, 1954 |
45 | 46 | 47 |
July 10, 1972 | July 22, 1990 | August 1, 2008 |
48 | 49 | 50 |
August 12, 2026 | August 23, 2044 | September 3, 2062 |
51 | 52 | 53 |
September 13, 2080 | September 25, 2098 | October 6, 2116 |
54 | 55 | 56 |
October 17, 2134 | October 28, 2152 | November 8, 2170 |
57 | ||
November 18, 2188 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
21 eclipse events between July 11, 1953 and July 11, 2029 | ||||
---|---|---|---|---|
July 10–11 | April 29–30 | February 15–16 | December 4 | September 21–23 |
116 | 118 | 120 | 122 | 124 |
July 11, 1953 | April 30, 1957 | February 15, 1961 | December 4, 1964 | September 22, 1968 |
126 | 128 | 130 | 132 | 134 |
July 10, 1972 | April 29, 1976 | February 16, 1980 | December 4, 1983 | September 23, 1987 |
136 | 138 | 140 | 142 | 144 |
July 11, 1991 | April 29, 1995 | February 16, 1999 | December 4, 2002 | September 22, 2006 |
146 | 148 | 150 | 152 | 154 |
July 11, 2010 | April 29, 2014 | February 15, 2018 | December 4, 2021 | September 21, 2025 |
156 | ||||
July 11, 2029 |
A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 30, 2052, with a magnitude of 1.0466. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will cross central Mexico and the southeastern states of the United States. Almost all of North America and the northern edge of South America will see a partial eclipse. It will be the 2nd total eclipse visible from the Florida Panhandle and southwest Georgia in 6.6 years. It will be the first total solar eclipse visible from Solar Saros 130 in 223 synodic months. It will be the last total solar eclipse visible in the United States until May 11, 2078.
A total solar eclipse occurred at the Moon's descending node of orbit on Monday, February 5, 1962, with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Indonesia, Netherlands New Guinea, the Territory of Papua New Guinea, British Solomon Islands, and Palmyra Atoll.
A total solar eclipse will occur at the Moon's descending node of orbit on Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, September 25, 2098, with a magnitude of 0.7871. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 15, 1982, with a magnitude of 0.735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. Occurring only 2.7 days before apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, January 16, 1972, with a magnitude of 0.9692. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, January 25, 1963, with a magnitude of 0.9951. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity crossed Chile, Argentina, South Africa, southern Basutoland and Malagasy Republic. Occurring 3.7 days before perigee, the Moon's apparent diameter was larger. The moon was 374,860 km from the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit on Friday, May 20, 2050, with a magnitude of 1.0038. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, October 21, 1930, with a magnitude of 1.023. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Niuafoʻou in Tonga, Chile, and a tiny part of Santa Cruz Province, Argentina.
An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, November 5, 2059, with a magnitude of 0.9417. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Sun will be 94% covered in a moderate annular eclipse, lasting 7 minutes exactly and covering a broad path up to 238 km wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse will pass through the Chilean cities of Valparaíso and the capital Santiago.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur at the Moon's descending node of orbit on Monday, August 24, 2082, with a magnitude of 1.0452. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, January 25, 1944, with a magnitude of 1.0428. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Peru, Brazil, British Sierra Leone, and French West Africa. At greatest eclipse, the Sun was 78 degrees above horizon.
A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, October 21, 1949, with a magnitude of 0.9638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, January 23, 1917, with a magnitude of 0.7254. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.