Solar eclipse of November 1, 1948

Last updated
Solar eclipse of November 1, 1948
SE1948Nov01T.png
Map
Type of eclipse
NatureTotal
Gamma −0.3517
Magnitude 1.0231
Maximum eclipse
Duration116 s (1 min 56 s)
Coordinates 33°06′S76°12′E / 33.1°S 76.2°E / -33.1; 76.2
Max. width of band84 km (52 mi)
Times (UTC)
Greatest eclipse5:59:18
References
Saros 142 (19 of 72)
Catalog # (SE5000) 9395

A total solar eclipse occurred at the Moon's descending node of orbit on Monday, November 1, 1948, [1] with a magnitude of 1.0231. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days after perigee (on October 29, 1948, at 21:20 UTC), the Moon's apparent diameter was larger. [2]

Contents

Totality was visible from Belgian Congo (today's DR Congo), Uganda Protectorate (today's Uganda) including the capital city Kampala, British Kenya (today's Kenya) including the capital city Nairobi, British Seychelles (today's Seychelles), and British Mauritius (today's Mauritius). A partial eclipse was visible for parts of East Africa, Southern Africa, Antarctica, and Australia.

During this eclipse, comet C/1948 V1, also known as the Eclipse Comet of 1948, was discovered shining near the Sun. [3]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [4]

November 1, 1948 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1948 November 01 at 03:19:27.1 UTC
First Umbral External Contact1948 November 01 at 04:19:32.4 UTC
First Central Line1948 November 01 at 04:19:46.0 UTC
First Umbral Internal Contact1948 November 01 at 04:19:59.5 UTC
First Penumbral Internal Contact1948 November 01 at 05:28:35.7 UTC
Greatest Eclipse1948 November 01 at 05:59:17.9 UTC
Greatest Duration1948 November 01 at 06:00:10.8 UTC
Ecliptic Conjunction1948 November 01 at 06:03:01.1 UTC
Equatorial Conjunction1948 November 01 at 06:16:14.5 UTC
Last Penumbral Internal Contact1948 November 01 at 06:29:35.7 UTC
Last Umbral Internal Contact1948 November 01 at 07:38:28.6 UTC
Last Central Line1948 November 01 at 07:38:39.8 UTC
Last Umbral External Contact1948 November 01 at 07:38:51.1 UTC
Last Penumbral External Contact1948 November 01 at 08:39:07.0 UTC
November 1, 1948 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.02312
Eclipse Obscuration1.04677
Gamma−0.35172
Sun Right Ascension14h25m22.0s
Sun Declination-14°24'53.4"
Sun Semi-Diameter16'07.1"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension14h24m46.3s
Moon Declination-14°43'55.8"
Moon Semi-Diameter16'14.2"
Moon Equatorial Horizontal Parallax0°59'35.3"
ΔT28.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of October–November 1948
October 18
Ascending node (full moon)
November 1
Descending node (new moon)
Lunar eclipse chart close-1948Oct18.png SE1948Nov01T.png
Penumbral lunar eclipse
Lunar Saros 116
Total solar eclipse
Solar Saros 142

Eclipses in 1948

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 142

Inex

Triad

Solar eclipses of 1946–1949

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]

The partial solar eclipses on January 3, 1946 and June 29, 1946 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1946 to 1949
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 May 30, 1946
SE1946May30P.png
Partial
−1.0711122 November 23, 1946
SE1946Nov23P.png
Partial
1.105
127 May 20, 1947
SE1947May20T.png
Total
−0.3528132 November 12, 1947
SE1947Nov12A.png
Annular
0.3743
137 May 9, 1948
SE1948May09A.png
Annular
0.4133142 November 1, 1948
SE1948Nov01T.png
Total
−0.3517
147 April 28, 1949
SE1949Apr28P.png
Partial
1.2068152 October 21, 1949
SE1949Oct21P.png
Partial
−1.027

Saros 142

This eclipse is a part of Saros series 142, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on April 17, 1624. It contains a hybrid eclipse on July 14, 1768, and total eclipses from July 25, 1786 through October 29, 2543. There are no annular eclipses in this set. The series ends at member 72 as a partial eclipse on June 5, 2904. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 38 at 6 minutes, 34 seconds on May 28, 2291. All eclipses in this series occur at the Moon’s descending node of orbit. [6]

Series members 11–32 occur between 1801 and 2200:
111213
SE1804Aug05T.png
August 5, 1804
SE1822Aug16T.png
August 16, 1822
SE1840Aug27T.png
August 27, 1840
141516
SE1858Sep07T.png
September 7, 1858
SE1876Sep17T.png
September 17, 1876
SE1894Sep29T.png
September 29, 1894
171819
SE1912Oct10T.png
October 10, 1912
SE1930Oct21T.png
October 21, 1930
SE1948Nov01T.png
November 1, 1948
202122
SE1966Nov12T.png
November 12, 1966
SE1984Nov22T.png
November 22, 1984
SE2002Dec04T.png
December 4, 2002
232425
SE2020Dec14T.png
December 14, 2020
SE2038Dec26T.png
December 26, 2038
SE2057Jan05T.png
January 5, 2057
262728
SE2075Jan16T.png
January 16, 2075
SE2093Jan27T.png
January 27, 2093
SE2111Feb08T.png
February 8, 2111
293031
SE2129Feb18T.png
February 18, 2129
SE2147Mar02T.png
March 2, 2147
SE2165Mar12T.png
March 12, 2165
32
SE2183Mar23T.png
March 23, 2183

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29January 14November 1–2August 20–21June 8
108110112114116
SE1884Mar27P.gif
March 27, 1884
SE1895Aug20P.gif
August 20, 1895
SE1899Jun08P.gif
June 8, 1899
118120122124126
SE1903Mar29A.png
March 29, 1903
SE1907Jan14T.png
January 14, 1907
SE1910Nov02P.png
November 2, 1910
SE1914Aug21T.png
August 21, 1914
SE1918Jun08T.png
June 8, 1918
128130132134136
SE1922Mar28A.png
March 28, 1922
SE1926Jan14T.png
January 14, 1926
SE1929Nov01A.png
November 1, 1929
SE1933Aug21A.png
August 21, 1933
SE1918Jun08T.png
June 8, 1937
138140142144146
SE1941Mar27A.png
March 27, 1941
SE1945Jan14A.png
January 14, 1945
SE1948Nov01T.png
November 1, 1948
SE1952Aug20A.png
August 20, 1952
SE1956Jun08T.png
June 8, 1956
148150152154
SE1960Mar27P.png
March 27, 1960
SE1964Jan14P.png
January 14, 1964
SE1967Nov02T.png
November 2, 1967
SE1971Aug20P.png
August 20, 1971

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2134
SE1806Dec10A.gif
December 10, 1806
(Saros 129)
SE1817Nov09T.gif
November 9, 1817
(Saros 130)
SE1828Oct09A.gif
October 9, 1828
(Saros 131)
SE1839Sep07A.png
September 7, 1839
(Saros 132)
SE1850Aug07T.gif
August 7, 1850
(Saros 133)
SE1861Jul08A.gif
July 8, 1861
(Saros 134)
SE1872Jun06A.gif
June 6, 1872
(Saros 135)
SE1883May06T.png
May 6, 1883
(Saros 136)
SE1894Apr06H.gif
April 6, 1894
(Saros 137)
SE1905Mar06A.png
March 6, 1905
(Saros 138)
SE1916Feb03T.png
February 3, 1916
(Saros 139)
SE1927Jan03A.png
January 3, 1927
(Saros 140)
SE1937Dec02A.png
December 2, 1937
(Saros 141)
SE1948Nov01T.png
November 1, 1948
(Saros 142)
SE1959Oct02T.png
October 2, 1959
(Saros 143)
SE1970Aug31A.png
August 31, 1970
(Saros 144)
SE1981Jul31T.png
July 31, 1981
(Saros 145)
SE1992Jun30T.png
June 30, 1992
(Saros 146)
SE2003May31A.png
May 31, 2003
(Saros 147)
SE2014Apr29A.png
April 29, 2014
(Saros 148)
SE2025Mar29P.png
March 29, 2025
(Saros 149)
SE2036Feb27P.png
February 27, 2036
(Saros 150)
SE2047Jan26P.png
January 26, 2047
(Saros 151)
SE2057Dec26T.png
December 26, 2057
(Saros 152)
SE2068Nov24P.png
November 24, 2068
(Saros 153)
SE2079Oct24A.png
October 24, 2079
(Saros 154)
SE2090Sep23T.png
September 23, 2090
(Saros 155)
Saros156 06van69 SE2101Aug24P.jpg
August 24, 2101
(Saros 156)
Saros157 04van70 SE2112Jul23P.jpg
July 23, 2112
(Saros 157)
Saros158 04van70 SE2123Jun23P.jpg
June 23, 2123
(Saros 158)
Saros159 01van70 SE2134May23P.jpg
May 23, 2134
(Saros 159)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1804Feb11H.png
February 11, 1804
(Saros 137)
SE1833Jan20A.gif
January 20, 1833
(Saros 138)
SE1861Dec31T.gif
December 31, 1861
(Saros 139)
SE1890Dec12H.gif
December 12, 1890
(Saros 140)
SE1919Nov22A.png
November 22, 1919
(Saros 141)
SE1948Nov01T.png
November 1, 1948
(Saros 142)
SE1977Oct12T.png
October 12, 1977
(Saros 143)
SE2006Sep22A.png
September 22, 2006
(Saros 144)
SE2035Sep02T.png
September 2, 2035
(Saros 145)
SE2064Aug12T.png
August 12, 2064
(Saros 146)
SE2093Jul23A.png
July 23, 2093
(Saros 147)
Saros148 27van75 SE2122Jul04T.jpg
July 4, 2122
(Saros 148)
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
(Saros 149)
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
(Saros 150)

Notes

  1. "November 1, 1948 Total Solar Eclipse". timeanddate. Retrieved 4 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 4 August 2024.
  3. Bortle, John E. "The Bright-Comet Chronicles". International Comet Quarterly. Retrieved 20 February 2013.
  4. "Total Solar Eclipse of 1948 Nov 01". EclipseWise.com. Retrieved 4 August 2024.
  5. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. "NASA - Catalog of Solar Eclipses of Saros 142". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 30, 2052</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 30, 2052, with a magnitude of 1.0466. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will cross central Mexico and the southeastern states of the United States. Almost all of North America and the northern edge of South America will see a partial eclipse. It will be the 2nd total eclipse visible from the Florida Panhandle and southwest Georgia in 6.6 years. It will be the first total solar eclipse visible from Solar Saros 130 in 223 synodic months. It will be the last total solar eclipse visible in the United States until May 11, 2078.

<span class="mw-page-title-main">Solar eclipse of March 30, 2033</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, March 30, 2033, with a magnitude of 1.0462. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 22, 2096</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This will be the first eclipse of saros series 139 to exceed series 136 in length of totality. The length of totality for saros 139 is increasing, while that of Saros 136 is decreasing.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, November 22, 1984, with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia, Papua New Guinea and southern Pacific Ocean. West of the International Date Line the eclipse took place on November 23, including all land in the path of totality. Occurring only 2.1 days after perigee, the Moon's apparent diameter was fairly larger.

<span class="mw-page-title-main">Solar eclipse of September 23, 2090</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, September 23, 2090, with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 2, 2035</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 2, 2035, with a magnitude of 1.032. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 12, 1977</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 12, 1977, with a magnitude of 1.0269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in the Pacific Ocean, Colombia and Venezuela.

<span class="mw-page-title-main">Solar eclipse of December 15, 2039</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, December 15, 2039, with a magnitude of 1.0356. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 20, 1974</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, June 20, 1974, with a magnitude of 1.0592. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the view of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 23, 1957</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 23, 1957, with a magnitude of 1.0013. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This total solar eclipse is non-central because gamma is between 0.9972 and 1.0260.

<span class="mw-page-title-main">Solar eclipse of July 24, 2055</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 24, 2055, with a magnitude of 1.0359. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 15, 2091</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, August 15, 2091, with a magnitude of 1.0216. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 21, 1930</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Tuesday, October 21 and Wednesday, October 22, 1930, with a magnitude of 1.023. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.6 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, December 26, 2057, with a magnitude of 1.0348. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 12, 2072</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, September 12, 2072, with a magnitude of 1.0558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 21, 2088</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

References