Solar eclipse of April 21, 2069

Last updated
Solar eclipse of April 21, 2069
SE2069Apr21P.png
Map
Type of eclipse
NaturePartial
Gamma 1.0624
Magnitude 0.8992
Maximum eclipse
Coordinates 71°00′N101°18′W / 71°N 101.3°W / 71; -101.3
Times (UTC)
Greatest eclipse10:11:09
References
Saros 120 (64 of 71)
Catalog # (SE5000) 9663

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, [1] with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

The partial solar eclipse will be visible for parts of eastern Canada, Greenland, Europe, and North Asia.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

April 21, 2069 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2069 April 21 at 08:17:35.0 UTC
Ecliptic Conjunction2069 April 21 at 10:00:35.3 UTC
Greatest Eclipse2069 April 21 at 10:11:08.9 UTC
Equatorial Conjunction2069 April 21 at 10:39:45.2 UTC
Last Penumbral External Contact2069 April 21 at 12:04:30.0 UTC
April 21, 2069 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.89916
Eclipse Obscuration0.88412
Gamma1.06241
Sun Right Ascension01h58m57.2s
Sun Declination+12°07'52.1"
Sun Semi-Diameter15'55.0"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension01h57m49.5s
Moon Declination+13°10'46.5"
Moon Semi-Diameter16'43.2"
Moon Equatorial Horizontal Parallax1°01'21.7"
ΔT97.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of April–May 2069
April 21
Descending node (new moon)
May 6
Ascending node (full moon)
May 20
Descending node (new moon)
SE2069Apr21P.png Lunar eclipse chart close-2069May06.png SE2069May20P.png
Partial solar eclipse
Solar Saros 120
Total lunar eclipse
Lunar Saros 132
Partial solar eclipse
Solar Saros 158

Eclipses in 2069

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 120

Inex

Triad

Solar eclipses of 2069–2072

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on May 20, 2069 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2069 to 2072
Descending node Ascending node
SarosMapGammaSarosMapGamma
120 April 21, 2069
SE2069Apr21P.png
Partial
1.0624125 October 15, 2069
SE2069Oct15P.png
Partial
−1.2524
130 April 11, 2070
SE2070Apr11T.png
Total
0.3652135 October 4, 2070
SE2070Oct04A.png
Annular
−0.495
140 March 31, 2071
SE2071Mar31A.png
Annular
−0.3739145 September 23, 2071
SE2071Sep23T.png
Total
0.262
150 March 19, 2072
SE2072Mar19P.png
Partial
−1.1405155 September 12, 2072
SE2072Sep12T.png
Total
0.9655

Saros 120

This eclipse is a part of Saros series 120, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 27, 933 AD. It contains annular eclipses from August 11, 1059 through April 26, 1492; hybrid eclipses from May 8, 1510 through June 8, 1564; and total eclipses from June 20, 1582 through March 30, 2033. The series ends at member 71 as a partial eclipse on July 7, 2195. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 11 at 6 minutes, 24 seconds on September 11, 1113, and the longest duration of totality was produced by member 60 at 2 minutes, 50 seconds on March 9, 1997. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 50–71 occur between 1801 and 2195:
505152
SE1816Nov19T.gif
November 19, 1816
SE1834Nov30T.gif
November 30, 1834
SE1852Dec11T.gif
December 11, 1852
535455
SE1870Dec22T.gif
December 22, 1870
SE1889Jan01T.png
January 1, 1889
SE1907Jan14T.png
January 14, 1907
565758
SE1925Jan24T.png
January 24, 1925
SE1943Feb04T.png
February 4, 1943
SE1961Feb15T.png
February 15, 1961
596061
SE1979Feb26T.png
February 26, 1979
SE1997Mar09T.png
March 9, 1997
SE2015Mar20T.png
March 20, 2015
626364
SE2033Mar30T.png
March 30, 2033
SE2051Apr11P.png
April 11, 2051
SE2069Apr21P.png
April 21, 2069
656667
SE2087May02P.png
May 2, 2087
Saros120 66van71 SE2105May14P.jpg
May 14, 2105
Saros120 67van71 SE2123May25P.jpg
May 25, 2123
686970
Saros120 68van71 SE2141Jun04P.jpg
June 4, 2141
Saros120 69van71 SE2159Jun16P.jpg
June 16, 2159
Saros120 70van71 SE2177Jun26P.jpg
June 26, 2177
71
Saros120 71van71 SE2195Jul07P.jpg
July 7, 2195

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between July 3, 2065 and November 26, 2152
July 3–4April 21–23February 7–8November 26–27September 13–15
118120122124126
SE2065Jul03P.png
July 3, 2065
SE2069Apr21P.png
April 21, 2069
SE2073Feb07P.png
February 7, 2073
SE2076Nov26P.png
November 26, 2076
SE2080Sep13P.png
September 13, 2080
128130132134136
SE2084Jul03A.png
July 3, 2084
SE2088Apr21T.png
April 21, 2088
SE2092Feb07A.png
February 7, 2092
SE2095Nov27A.png
November 27, 2095
SE2099Sep14T.png
September 14, 2099
138140142144146
SE2103Jul04A.png
July 4, 2103
SE2107Apr23A.png
April 23, 2107
SE2111Feb08T.png
February 8, 2111
SE2114Nov27A.png
November 27, 2114
SE2118Sep15T.png
September 15, 2118
148150152154156
Saros148 27van75 SE2122Jul04T.jpg
July 4, 2122
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
Saros154 13van71 SE2133Nov26A.jpg
November 26, 2133
Saros156 08van69 SE2137Sep15P.jpg
September 15, 2137
158160162164
Saros158 05van70 SE2141Jul03P.jpg
July 3, 2141
Saros164 04van80 SE2152Nov26P.jpg
November 26, 2152

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 2036 and 2200
SE2036Jul23P.png
July 23, 2036
(Saros 117)
SE2047Jun23P.png
June 23, 2047
(Saros 118)
SE2058May22P.png
May 22, 2058
(Saros 119)
SE2069Apr21P.png
April 21, 2069
(Saros 120)
SE2080Mar21P.png
March 21, 2080
(Saros 121)
SE2091Feb18P.png
February 18, 2091
(Saros 122)
Saros123 58van70 SE2102Jan19P.jpg
January 19, 2102
(Saros 123)
Saros124 60van73 SE2112Dec19P.jpg
December 19, 2112
(Saros 124)
Saros125 60van73 SE2123Nov18P.jpg
November 18, 2123
(Saros 125)
Saros126 54van72 SE2134Oct17P.jpg
October 17, 2134
(Saros 126)
Saros127 65van82 SE2145Sep16P.jpg
September 16, 2145
(Saros 127)
Saros128 66van73 SE2156Aug16P.jpg
August 16, 2156
(Saros 128)
Saros129 60van80 SE2167Jul16T.jpg
July 16, 2167
(Saros 129)
SE2178Jun16T.png
June 16, 2178
(Saros 130)
SE2189May15A.png
May 15, 2189
(Saros 131)
SE2200Apr14T.png
April 14, 2200
(Saros 132)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1808Oct19P.gif
October 19, 1808
(Saros 111)
SE1895Aug20P.gif
August 20, 1895
(Saros 114)
SE1924Jul31P.png
July 31, 1924
(Saros 115)
SE1953Jul11P.png
July 11, 1953
(Saros 116)
SE1982Jun21P.png
June 21, 1982
(Saros 117)
SE2011Jun01P.png
June 1, 2011
(Saros 118)
SE2040May11P.png
May 11, 2040
(Saros 119)
SE2069Apr21P.png
April 21, 2069
(Saros 120)
SE2098Apr01P.png
April 1, 2098
(Saros 121)
Saros122 64van70 SE2127Mar13P.jpg
March 13, 2127
(Saros 122)
Saros123 61van70 SE2156Feb21P.jpg
February 21, 2156
(Saros 123)
Saros124 64van73 SE2185Jan31P.jpg
January 31, 2185
(Saros 124)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 25, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, September 25, 2098, with a magnitude of 0.7871. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 21, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, June 21, 1982, with a magnitude of 0.6168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 4, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040, with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 2, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, May 2, 2087, with a magnitude of 0.8011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 27, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 27, 2065, with a magnitude of 0.8769. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 24, 2068</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, November 24, 2068, with a magnitude of 0.9109. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 20, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, May 20, 2069, with a magnitude of 0.0879. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 3, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 15, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 15, 2069, with a magnitude of 0.5298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 7, 2073</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Monday, February 6 and Tuesday, February 7, 2073, with a magnitude of 0.6768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, June 1, 2076, with a magnitude of 0.2897. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 26, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, November 26, 2076, with a magnitude of 0.7315. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 21, 2080</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, March 21, 2080, with a magnitude of 0.8734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 1, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 1, 2098, with a magnitude of 0.7984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 26, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, October 26, 2087, with a magnitude of 0.4696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "April 21, 2069 Partial Solar Eclipse". timeanddate. Retrieved 20 August 2024.
  2. "Partial Solar Eclipse of 2069 Apr 21". EclipseWise.com. Retrieved 20 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 120". eclipse.gsfc.nasa.gov.