Solar eclipse of December 14, 1917

Last updated
Solar eclipse of December 14, 1917
SE1917Dec14A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.9157
Magnitude 0.9791
Maximum eclipse
Duration77 s (1 min 17 s)
Coordinates 88°00′S124°48′E / 88°S 124.8°E / -88; 124.8
Max. width of band189 km (117 mi)
Times (UTC)
Greatest eclipse9:27:20
References
Saros 121 (55 of 71)
Catalog # (SE5000) 9323

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, December 14, 1917, with a magnitude of 0.9791. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Contents

This was the last of four solar eclipses in 1917, with the others occurring on January 23, June 19 and July 19.

This annular eclipse is notable in that the path of annularity passed over the South Pole.

Eclipses in 1917

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 121

Inex

Triad

Solar eclipses of 1916–1920

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

The solar eclipses on February 3, 1916 (total), July 30, 1916 (annular), January 23, 1917 (partial), and July 19, 1917 (partial) occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1916 to 1920
Ascending node Descending node
SarosMapGammaSarosMapGamma
111 December 24, 1916
SE1916Dec24P.png
Partial
−1.5321116 June 19, 1917
SE1917Jun19P.png
Partial
1.2857
121 December 14, 1917
SE1917Dec14A.png
Annular
−0.9157126 June 8, 1918
SE1918Jun08T.png
Total
0.4658
131 December 3, 1918
SE1918Dec03A.png
Annular
−0.2387136
1919 eclipse positive.jpg
Totality in Príncipe
May 29, 1919
SE1919May29T.png
Total
−0.2955
141 November 22, 1919
SE1919Nov22A.png
Annular
0.4549146 May 18, 1920
SE1920May18P.png
Partial
−1.0239
151 November 10, 1920
SE1920Nov10P.png
Partial
1.1287

Saros 121

This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 25, 944 AD. It contains total eclipses from July 10, 1070 through October 9, 1809; hybrid eclipses on October 20, 1827 and October 30, 1845; and annular eclipses from November 11, 1863 through February 28, 2044. The series ends at member 71 as a partial eclipse on June 7, 2206. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 6 minutes, 20 seconds on June 21, 1629, and the longest duration of annularity will be produced by member 62 at 2 minutes, 27 seconds on February 28, 2044. All eclipses in this series occur at the Moon’s ascending node of orbit. [2]

Series members 49–70 occur between 1801 and 2200:
495051
SE1809Oct09T.gif
October 9, 1809
SE1827Oct20H.gif
October 20, 1827
SE1845Oct30H.gif
October 30, 1845
525354
SE1863Nov11A.gif
November 11, 1863
SE1881Nov21A.png
November 21, 1881
SE1899Dec03A.png
December 3, 1899
555657
SE1917Dec14A.png
December 14, 1917
SE1935Dec25A.png
December 25, 1935
SE1954Jan05A.png
January 5, 1954
585960
SE1972Jan16A.png
January 16, 1972
SE1990Jan26A.png
January 26, 1990
SE2008Feb07A.png
February 7, 2008
616263
SE2026Feb17A.png
February 17, 2026
SE2044Feb28A.png
February 28, 2044
SE2062Mar11P.png
March 11, 2062
646566
SE2080Mar21P.png
March 21, 2080
SE2098Apr01P.png
April 1, 2098
Saros121 66van71 SE2116Apr13P.jpg
April 13, 2116
676869
Saros121 67van71 SE2134Apr24P.jpg
April 24, 2134
Saros121 68van71 SE2152May04P.jpg
May 4, 2152
Saros121 69van71 SE2170May16P.jpg
May 16, 2170
70
Saros121 70van71 SE2188May26P.jpg
May 26, 2188

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 13, 1898 and July 20, 1982
December 13–14October 1–2July 20–21May 9February 24–25
111113115117119
SE1898Dec13P.gif
December 13, 1898
SE1906Jul21P.png
July 21, 1906
SE1910May09T.png
May 9, 1910
SE1914Feb25A.png
February 25, 1914
121123125127129
SE1917Dec14A.png
December 14, 1917
SE1921Oct01T.png
October 1, 1921
SE1925Jul20A.png
July 20, 1925
SE1929May09T.png
May 9, 1929
SE1933Feb24A.png
February 24, 1933
131133135137139
SE1936Dec13A.png
December 13, 1936
SE1940Oct01T.png
October 1, 1940
SE1944Jul20A.png
July 20, 1944
SE1948May09A.png
May 9, 1948
SE1952Feb25T.png
February 25, 1952
141143145147149
SE1955Dec14A.png
December 14, 1955
SE1959Oct02T.png
October 2, 1959
SE1963Jul20T.png
July 20, 1963
SE1967May09P.png
May 9, 1967
SE1971Feb25P.png
February 25, 1971
151153155
SE1974Dec13P.png
December 13, 1974
SE1978Oct02P.png
October 2, 1978
SE1982Jul20P.png
July 20, 1982

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1808Oct19P.gif
October 19, 1808
(Saros 111)
SE1819Sep19Pe.gif
September 19, 1819
(Saros 112)
SE1830Aug18P.gif
August 18, 1830
(Saros 113)
SE1841Jul18P.gif
July 18, 1841
(Saros 114)
SE1852Jun17P.gif
June 17, 1852
(Saros 115)
SE1863May17P.gif
May 17, 1863
(Saros 116)
SE1874Apr16T.png
April 16, 1874
(Saros 117)
SE1885Mar16A.gif
March 16, 1885
(Saros 118)
SE1896Feb13A.png
February 13, 1896
(Saros 119)
SE1907Jan14T.png
January 14, 1907
(Saros 120)
SE1917Dec14A.png
December 14, 1917
(Saros 121)
SE1928Nov12P.png
November 12, 1928
(Saros 122)
SE1939Oct12T.png
October 12, 1939
(Saros 123)
SE1950Sep12T.png
September 12, 1950
(Saros 124)
SE1961Aug11A.png
August 11, 1961
(Saros 125)
SE1972Jul10T.png
July 10, 1972
(Saros 126)
SE1983Jun11T.png
June 11, 1983
(Saros 127)
SE1994May10A.png
May 10, 1994
(Saros 128)
SE2005Apr08H.png
April 8, 2005
(Saros 129)
SE2016Mar09T.png
March 9, 2016
(Saros 130)
SE2027Feb06A.png
February 6, 2027
(Saros 131)
SE2038Jan05A.png
January 5, 2038
(Saros 132)
SE2048Dec05T.png
December 5, 2048
(Saros 133)
SE2059Nov05A.png
November 5, 2059
(Saros 134)
SE2070Oct04A.png
October 4, 2070
(Saros 135)
SE2081Sep03T.png
September 3, 2081
(Saros 136)
SE2092Aug03A.png
August 3, 2092
(Saros 137)
SE2103Jul04A.png
July 4, 2103
(Saros 138)
SE2114Jun03T.png
June 3, 2114
(Saros 139)
SE2125May03A.png
May 3, 2125
(Saros 140)
SE2136Apr01A.png
April 1, 2136
(Saros 141)
SE2147Mar02T.png
March 2, 2147
(Saros 142)
SE2158Jan30A.png
January 30, 2158
(Saros 143)
SE2168Dec29A.png
December 29, 2168
(Saros 144)
SE2179Nov28T.png
November 28, 2179
(Saros 145)
SE2190Oct29H.png
October 29, 2190
(Saros 146)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Mar04T.png
March 4, 1802
(Saros 117)
SE1831Feb12A.gif
February 12, 1831
(Saros 118)
SE1860Jan23A.png
January 23, 1860
(Saros 119)
SE1889Jan01T.png
January 1, 1889
(Saros 120)
SE1917Dec14A.png
December 14, 1917
(Saros 121)
SE1946Nov23P.png
November 23, 1946
(Saros 122)
SE1975Nov03P.png
November 3, 1975
(Saros 123)
SE2004Oct14P.png
October 14, 2004
(Saros 124)
SE2033Sep23P.png
September 23, 2033
(Saros 125)
SE2062Sep03P.png
September 3, 2062
(Saros 126)
SE2091Aug15T.png
August 15, 2091
(Saros 127)
SE2120Jul25A.png
July 25, 2120
(Saros 128)
Saros129 59van80 SE2149Jul05T.jpg
July 5, 2149
(Saros 129)
SE2178Jun16T.png
June 16, 2178
(Saros 130)

Notes

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 121". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 5, 2046</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Monday, February 5, 2046, with a magnitude of 0.9232. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 21, 2039</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, June 21, 2039, with a magnitude of 0.9454. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This eclipse will start only a few hours after the northern solstice and most of the path will go across areas with midnight sun. For mainland Norway, Sweden and Belarus, it will be the first central solar eclipse since June 1954.

<span class="mw-page-title-main">Solar eclipse of April 9, 1986</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986, with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 20, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 20, 1982, with a magnitude of 0.4643. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 2, 1956</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, December 2, 1956, with a magnitude of 0.8047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 5, 1954</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, January 5, 1954, with a magnitude of 0.972. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 18, 1950</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, March 18, 1950, with a magnitude of 0.962. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 4, 2070</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, October 4, 2070, with a magnitude of 0.9731. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 28, 2063</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063, with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 14, 2088</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 1, 1943</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 1, 1943, with a magnitude of 0.9409. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the southern Indian Ocean, with the only land being Île Amsterdam in French Madagascar. A partial solar eclipse was visible from Australia, Indonesia, Malaysia, eastern Madagascar, Antarctica's Wilkes Land.

<span class="mw-page-title-main">Solar eclipse of July 20, 1944</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from British Uganda, Anglo-Egyptian Sudan, British Kenya, Ethiopia, British Somaliland, British Raj, Burma, Thailand, French Indochina, Philippines, South Seas Mandate in Japan the Territory of New Guinea.

<span class="mw-page-title-main">Solar eclipse of August 30, 1924</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, August 30, 1924, with a magnitude of 0.4245. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 9, 1926</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, July 9, 1926, with a magnitude of 0.968. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the islands of Pulo Anna and Merir in Japan's South Seas Mandate and Wake Island on July 10 (Saturday), and Midway Atoll on July 9 (Friday).

References