Solar eclipse of June 21, 2039

Last updated
Solar eclipse of June 21, 2039
SE2039Jun21A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.8312
Magnitude 0.9454
Maximum eclipse
Duration245 sec (4 m 5 s)
Coordinates 78°54′N102°06′W / 78.9°N 102.1°W / 78.9; -102.1
Max. width of band365 km (227 mi)
Times (UTC)
Greatest eclipse17:12:54
References
Saros 147 (24 of 80)
Catalog # (SE5000) 9595

An annular solar eclipse will occur on Tuesday, June 21, 2039. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This eclipse will start only a few hours after the northern solstice and most of the path will go across areas with midnight sun. For mainland Norway, Sweden and Belarus it will be the first central solar eclipse since June 1954.

Contents

Images

SE2039Jun21A.gif
Animated path

Solar eclipses of 2036–2039

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

Note: Partial solar eclipses on February 27, 2036 and August 21, 2036 occur on the previod lunar year eclipse set.

Solar eclipse series sets from 2036–2039
Ascending node Descending node
117 July 23, 2036
SE2036Jul23P.png
Partial
122 January 16, 2037
SE2037Jan16P.png
Partial
127 July 13, 2037
SE2037Jul13T.png
Total
132 January 5, 2038
SE2038Jan05A.png
Annular
137 July 2, 2038
SE2038Jul02A.png
Annular
142 December 26, 2038
SE2038Dec26T.png
Total
147 June 21, 2039
SE2039Jun21A.png
Annular
152 December 15, 2039
SE2039Dec15T.png
Total

Tritos

Tzolkinex

Saros 147

Solar saros 147, repeating every about 18 years and 11 days, contains 80 events. The series started with a partial solar eclipse on October 12, 1624. It has annular eclipses from May 31, 2003, to July 31, 2706. There are no total eclipses in this series. The series ends at member 80 as a partial eclipse on February 24, 3049. The longest annular eclipse will be on November 21, 2291, at 9 minutes and 41 seconds. [2]

Series members 17–27 occur between 1901 and 2100:
171819
SE1913Apr06P.png
April 6, 1913
SE1931Apr18P.png
April 18, 1931
SE1949Apr28P.png
April 28, 1949
202122
SE1967May09P.png
May 9, 1967
SE1985May19P.png
May 19, 1985
SE2003May31A.png
May 31, 2003
232425
SE2021Jun10A.png
June 10, 2021
SE2039Jun21A.png
June 21, 2039
SE2057Jul01A.png
July 1, 2057
2627
SE2075Jul13A.png
July 13, 2075
SE2093Jul23A.png
July 23, 2093

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between June 21, 1982, and June 21, 2058
June 21April 8–9January 26November 13–14September 1–2
107109111113115
June 21, 1963April 9, 1967January 26, 1971November 14, 1974September 2, 1978
117119121123125
SE1982Jun21P.png
June 21, 1982
SE1986Apr09P.png
April 9, 1986
SE1990Jan26A.png
January 26, 1990
SE1993Nov13P.png
November 13, 1993
SE1997Sep02P.png
September 2, 1997
127129131133135
SE2001Jun21T.png
June 21, 2001
SE2005Apr08H.png
April 8, 2005
SE2009Jan26A.png
January 26, 2009
SE2012Nov13T.png
November 13, 2012
SE2016Sep01A.png
September 1, 2016
137139141143145
SE2020Jun21A.png
June 21, 2020
SE2024Apr08T.png
April 8, 2024
SE2028Jan26A.png
January 26, 2028
SE2031Nov14H.png
November 14, 2031
SE2035Sep02T.png
September 2, 2035
147149151153155
SE2039Jun21A.png
June 21, 2039
SE2043Apr09T.png
April 9, 2043
SE2047Jan26P.png
January 26, 2047
SE2050Nov14P.png
November 14, 2050
SE2054Sep02P.png
September 2, 2054
157
SE2058Jun21P.png
June 21, 2058

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 8, 2005</span> 21st-century total solar eclipse

A total solar eclipse occurred at the Moon's ascending node on April 8, 2005. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse is a hybrid event, a narrow total eclipse, and beginning and ending as an annular eclipse.

<span class="mw-page-title-main">Solar eclipse of May 31, 2003</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of the orbit on Saturday, May 31, 2003. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible across central Greenland, the Faroe Islands, Iceland, Jan Mayen and northern Scotland. Partiality was visible throughout Europe, Asia, and far northwestern Canada.

<span class="mw-page-title-main">Solar eclipse of September 22, 2006</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of the orbit on September 22, 2006. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity of this eclipse passed through Guyana, Suriname, French Guiana, the northern tip of Roraima and Amapá of Brazil, and the southern Atlantic.

<span class="mw-page-title-main">Solar eclipse of February 26, 2017</span> 21st-century annular solar eclipse

An annular solar eclipse took place on Sunday, February 26, 2017. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 4.7 days before perigee, the Moon's apparent diameter was larger. The moon's apparent diameter was just over 0.7% smaller than the Sun's.

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur on Tuesday, January 5, 2038. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 10, 2021</span> Annular solar eclipse

An annular solar eclipse occurred on Thursday, June 10, 2021, when the Moon passed between Earth and the Sun, thereby partly obscuring the image of the Sun for a viewer on Earth. During the eclipse, the Moon's apparent diameter was smaller than the Sun's, so it caused the Sun to look like an annulus. The annular eclipse was visible from parts of northeastern Canada, Greenland, the Arctic Ocean, and the Russian Far East, whilst the eclipse appeared partial from a region thousands of kilometres wide, which included northeastern North America, most of Europe, and northern Asia.

<span class="mw-page-title-main">Solar eclipse of December 4, 2021</span> Total solar eclipse in Antarctica

A total solar eclipse took place on Saturday, December 4, 2021, when the Moon passed between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. This eclipse was unusual as the path of the total eclipse moved from east to west across West Antarctica, while most eclipse paths move from west to east. This reversal is only possible in polar regions. Its path across Antarctica crossed near Berkner Island, traversed an arc over the continent and passed over Shepard Island.

<span class="mw-page-title-main">Solar eclipse of December 5, 2048</span> Future total solar eclipse

A total solar eclipse will occur on December 5, 2048. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 20, 2023</span> Solar eclipse

A hybrid solar eclipse occurred on Thursday, April 20, 2023. A solar eclipse occurs when the Moon passes between Earth and the Sun thereby totally or partly obscuring the Sun for a viewer on Earth. A hybrid solar eclipse is a rare type of solar eclipse that changes its appearance from annular to total and back as the Moon's shadow moves across the Earth's surface. Totality occurs in a narrow path across the surface of the Earth, with the partial solar eclipse visible over a surrounding region thousands of kilometers wide. Hybrid solar eclipses are extremely rare, occurring in only 3.1% of solar eclipses in the 21st century.

<span class="mw-page-title-main">Solar eclipse of July 22, 2028</span> Future total solar eclipse

A total solar eclipse will occur on Saturday, July 22, 2028. The central line of the path of the eclipse will cross the Australian continent from the Kimberley region in the north west and continue in a south-easterly direction through Western Australia, the Northern Territory, south-west Queensland and New South Wales, close to the towns of Wyndham, Kununurra, Tennant Creek, Birdsville, Bourke and Dubbo, and continuing on through the centre of Sydney, where the eclipse will have a duration of over three minutes. It will also cross Queenstown and Dunedin, New Zealand. Totality will also be viewable from two of Australia's external territories: Christmas Island and Cocos (Keeling) Island.

<span class="mw-page-title-main">Solar eclipse of February 17, 2026</span> Future annular solar eclipse

An annular solar eclipse will occur on Tuesday, February 17, 2026. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 12, 2034</span> Future annular solar eclipse

An annular solar eclipse will occur on Tuesday, September 12, 2034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur on Wednesday, February 27, 2036. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 21, 2036</span> Future annular solar eclipse

A partial solar eclipse will occur on Thursday, August 21, 2036. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur on Friday, July 2, 2038. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 13, 2037</span> Future total solar eclipse

A total solar eclipse will occur on Monday, July 13, 2037. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will pass through the centre of Brisbane and the Gold Coast.

<span class="mw-page-title-main">Solar eclipse of December 15, 2039</span> Future total solar eclipse

A total solar eclipse will occur on Thursday, December 15, 2039. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 25, 2041</span> Future annular solar eclipse

An annular solar eclipse will occur on Friday, October 25, 2041. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 5, 2059</span> Future annular solar eclipse

An annular solar eclipse will occur on November 5, 2059. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Sun will be 94% covered in a moderate annular eclipse, lasting 7 minutes exactly and covering a broad path up to 238 km wide.

<span class="mw-page-title-main">Solar eclipse of May 22, 2077</span> Future total solar eclipse

A total solar eclipse will occur on Saturday, May 22, 2077. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.