Solar eclipse of August 9, 1953

Last updated
Solar eclipse of August 9, 1953
SE1953Aug09P.png
Map
Type of eclipse
NaturePartial
Gamma −1.344
Magnitude 0.3729
Maximum eclipse
Coordinates 62°12′S114°42′W / 62.2°S 114.7°W / -62.2; -114.7
Times (UTC)
Greatest eclipse15:55:03
References
Saros 154 (3 of 71)
Catalog # (SE5000) 9405

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, [1] with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of Antarctica and extreme southern South America.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

August 9, 1953 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1953 August 09 at 14:22:15.1 UTC
Greatest Eclipse1953 August 09 at 15:55:02.5 UTC
Ecliptic Conjunction1953 August 09 at 16:10:26.5 UTC
Equatorial Conjunction1953 August 09 at 17:02:08.4 UTC
Last Penumbral External Contact1953 August 09 at 17:27:26.5 UTC
August 9, 1953 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.37289
Eclipse Obscuration0.25324
Gamma−1.34403
Sun Right Ascension09h16m48.0s
Sun Declination+15°49'20.1"
Sun Semi-Diameter15'46.7"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension09h14m48.9s
Moon Declination+14°41'52.0"
Moon Semi-Diameter14'54.3"
Moon Equatorial Horizontal Parallax0°54'42.1"
ΔT30.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of July–August 1953
July 11
Descending node (new moon)
July 26
Ascending node (full moon)
August 9
Descending node (new moon)
SE1953Jul11P.png Lunar eclipse chart close-1953Jul26.png SE1953Aug09P.png
Partial solar eclipse
Solar Saros 116
Total lunar eclipse
Lunar Saros 128
Partial solar eclipse
Solar Saros 154

Eclipses in 1953

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 154

Inex

Triad

Solar eclipses of 1950–1953

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on July 11, 1953 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1950 to 1953
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 March 18, 1950
SE1950Mar18A.png
Annular (non-central)
0.9988124 September 12, 1950
SE1950Sep12T.png
Total
0.8903
129 March 7, 1951
SE1951Mar07A.png
Annular
−0.242134 September 1, 1951
SE1951Sep01A.png
Annular
0.1557
139 February 25, 1952
SE1952Feb25T.png
Total
0.4697144 August 20, 1952
SE1952Aug20A.png
Annular
−0.6102
149 February 14, 1953
SE1953Feb14P.png
Partial
1.1331154 August 9, 1953
SE1953Aug09P.png
Partial
−1.344

Saros 154

This eclipse is a part of Saros series 154, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 19, 1917. It contains annular eclipses from October 3, 2043 through March 27, 2332; hybrid eclipses from April 7, 2350 through April 29, 2386; and total eclipses from May 9, 2404 through May 29, 3035. The series ends at member 71 as a partial eclipse on August 25, 3179. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 9 at 3 minutes, 41 seconds on October 13, 2061, and the longest duration of totality will be produced by member 35 at 4 minutes, 50 seconds on July 25, 2530. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 1–16 occur between 1917 and 2200:
123
SE1917Jul19P.png
July 19, 1917
SE1935Jul30P.png
July 30, 1935
SE1953Aug09P.png
August 9, 1953
456
SE1971Aug20P.png
August 20, 1971
SE1989Aug31P.png
August 31, 1989
SE2007Sep11P.png
September 11, 2007
789
SE2025Sep21P.png
September 21, 2025
SE2043Oct03A.png
October 3, 2043
SE2061Oct13A.png
October 13, 2061
101112
SE2079Oct24A.png
October 24, 2079
SE2097Nov04A.png
November 4, 2097
SE2115Nov16A.png
November 16, 2115
131415
Saros154 13van71 SE2133Nov26A.jpg
November 26, 2133
Saros154 14van71 SE2151Dec08A.jpg
December 8, 2151
Saros154 15van71 SE2169Dec18A.jpg
December 18, 2169
16
Saros154 16van71 SE2187Dec29A.jpg
December 29, 2187

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 16, 1866 and August 9, 1953
March 16–17January 1–3October 20–22August 9–10May 27–29
108110112114116
SE1866Mar16P.gif
March 16, 1866
SE1877Aug09P.gif
August 9, 1877
SE1881May27P.gif
May 27, 1881
118120122124126
SE1885Mar16A.gif
March 16, 1885
SE1889Jan01T.png
January 1, 1889
SE1892Oct20P.gif
October 20, 1892
SE1896Aug09T.png
August 9, 1896
SE1900May28T.png
May 28, 1900
128130132134136
SE1904Mar17A.png
March 17, 1904
SE1908Jan03T.png
January 3, 1908
SE1911Oct22A.png
October 22, 1911
SE1915Aug10A.png
August 10, 1915
SE1919May29T.png
May 29, 1919
138140142144146
SE1923Mar17A.png
March 17, 1923
SE1927Jan03A.png
January 3, 1927
SE1930Oct21T.png
October 21, 1930
SE1934Aug10A.png
August 10, 1934
SE1938May29T.png
May 29, 1938
148150152154
SE1942Mar16P.png
March 16, 1942
SE1946Jan03P.png
January 3, 1946
SE1949Oct21P.png
October 21, 1949
SE1953Aug09P.png
August 9, 1953

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1964
SE1811Sep17A.gif
September 17, 1811
(Saros 141)
SE1822Aug16T.gif
August 16, 1822
(Saros 142)
SE1833Jul17T.gif
July 17, 1833
(Saros 143)
SE1844Jun16P.gif
June 16, 1844
(Saros 144)
SE1855May16P.gif
May 16, 1855
(Saros 145)
SE1866Apr15P.gif
April 15, 1866
(Saros 146)
SE1877Mar15P.gif
March 15, 1877
(Saros 147)
SE1888Feb11P.gif
February 11, 1888
(Saros 148)
SE1899Jan11P.gif
January 11, 1899
(Saros 149)
SE1909Dec12P.png
December 12, 1909
(Saros 150)
SE1920Nov10P.png
November 10, 1920
(Saros 151)
SE1931Oct11P.png
October 11, 1931
(Saros 152)
SE1942Sep10P.png
September 10, 1942
(Saros 153)
SE1953Aug09P.png
August 9, 1953
(Saros 154)
SE1964Jul09P.png
July 9, 1964
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2069
SE1808Nov18P.gif
November 18, 1808
(Saros 149)
SE1837Oct29P.gif
October 29, 1837
(Saros 150)
SE1866Oct08P.gif
October 8, 1866
(Saros 151)
SE1895Sep18P.gif
September 18, 1895
(Saros 152)
SE1924Aug30P.png
August 30, 1924
(Saros 153)
SE1953Aug09P.png
August 9, 1953
(Saros 154)
SE1982Jul20P.png
July 20, 1982
(Saros 155)
SE2011Jul01P.png
July 1, 2011
(Saros 156)
SE2069May20P.png
May 20, 2069
(Saros 158)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 11, 2007</span> Partial solar eclipse September 11, 2007

A partial solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, September 11, 2007, with a magnitude of 0.7507. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 5, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Saturday, February 5, 2000, with a magnitude of 0.5795. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was only visible over Antarctica.

<span class="mw-page-title-main">Solar eclipse of April 17, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, April 17, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 3, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 31, 1989</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 20, 2050</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, May 20, 2050, with a magnitude of 1.0038. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 21, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 12, 2064</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse will pass through the Chilean cities of Valparaíso and the capital Santiago.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 18, 2091</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 21, 2088</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 1, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "August 9, 1953 Partial Solar Eclipse". timeanddate. Retrieved 5 August 2024.
  2. "Partial Solar Eclipse of 1953 Aug 09". EclipseWise.com. Retrieved 5 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 154". eclipse.gsfc.nasa.gov.