Solar eclipse of October 14, 2042

Last updated
Solar eclipse of October 14, 2042
SE2042Oct14A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.303
Magnitude 0.93
Maximum eclipse
Duration464 s (7 min 44 s)
Coordinates 23°42′S137°48′E / 23.7°S 137.8°E / -23.7; 137.8
Max. width of band273 km (170 mi)
Times (UTC)
Greatest eclipse2:00:42
References
Saros 144 (18 of 70)
Catalog # (SE5000) 9602

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 14, 2042, [1] with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 9 hours before apogee (on October 14, 2042, at 11:00 UTC), the Moon's apparent diameter will be smaller. [2]

Contents

The path of annularity will be visible from parts of the Andaman and Nicobar Islands, southern Thailand, Malaysia, Indonesia, East Timor, Australia, and New Zealand. A partial solar eclipse will be visible for parts of South Asia, Southeast Asia, Australia, Oceania, and Antarctica.

Images

SE2042Oct14A.gif
Animated path

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

October 14, 2042 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2042 October 13 at 22:57:13.3 UTC
First Umbral External Contact2042 October 14 at 00:04:10.2 UTC
First Central Line2042 October 14 at 00:07:16.8 UTC
First Umbral Internal Contact2042 October 14 at 00:10:23.8 UTC
First Penumbral Internal Contact2042 October 14 at 01:24:38.8 UTC
Greatest Eclipse2042 October 14 at 02:00:41.9 UTC
Ecliptic Conjunction2042 October 14 at 02:04:20.6 UTC
Greatest Duration2042 October 14 at 02:14:59.1 UTC
Equatorial Conjunction2042 October 14 at 02:19:43.8 UTC
Last Penumbral Internal Contact2042 October 14 at 02:36:17.2 UTC
Last Umbral Internal Contact2042 October 14 at 03:50:47.6 UTC
Last Central Line2042 October 14 at 03:53:55.3 UTC
Last Umbral External Contact2042 October 14 at 03:57:02.4 UTC
Last Penumbral External Contact2042 October 14 at 05:04:03.6 UTC
October 14, 2042 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.93005
Eclipse Obscuration0.86500
Gamma−0.30304
Sun Right Ascension13h17m05.8s
Sun Declination-08°08'35.1"
Sun Semi-Diameter16'01.9"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension13h16m35.0s
Moon Declination-08°23'00.1"
Moon Semi-Diameter14'41.9"
Moon Equatorial Horizontal Parallax0°53'56.6"
ΔT80.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of September–October 2042
September 29
Ascending node (full moon)
October 14
Descending node (new moon)
Lunar eclipse chart close-2042Sep29.png SE2042Oct14A.png
Penumbral lunar eclipse
Lunar Saros 118
Annular solar eclipse
Solar Saros 144

Eclipses in 2042

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 144

Inex

Triad

Solar eclipses of 2040–2043

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

Solar eclipse series sets from 2040 to 2043
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 May 11, 2040
SE2040May11P.png
Partial
−1.2529124 November 4, 2040
SE2040Nov04P.png
Partial
1.0993
129 April 30, 2041
SE2041Apr30T.png
Total
−0.4492134 October 25, 2041
SE2041Oct25A.png
Annular
0.4133
139 April 20, 2042
SE2042Apr20T.png
Total
0.2956144 October 14, 2042
SE2042Oct14A.png
Annular
−0.303
149 April 9, 2043
SE2043Apr09T.png
Total (non-central)
1.0031154 October 3, 2043
SE2043Oct03A.png
Annular (non-central)
1.0102

Saros 144

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit. [5]

Series members 5–26 occur between 1801 and 2200:
567
SE1808May25P.png
May 25, 1808
SE1826Jun05P.png
June 5, 1826
SE1844Jun16P.png
June 16, 1844
8910
SE1862Jun27P.png
June 27, 1862
SE1880Jul07A.png
July 7, 1880
SE1898Jul18A.png
July 18, 1898
111213
SE1916Jul30A.png
July 30, 1916
SE1934Aug10A.png
August 10, 1934
SE1952Aug20A.png
August 20, 1952
141516
SE1970Aug31A.png
August 31, 1970
SE1988Sep11A.png
September 11, 1988
SE2006Sep22A.png
September 22, 2006
171819
SE2024Oct02A.png
October 2, 2024
SE2042Oct14A.png
October 14, 2042
SE2060Oct24A.png
October 24, 2060
202122
SE2078Nov04A.png
November 4, 2078
SE2096Nov15A.png
November 15, 2096
SE2114Nov27A.png
November 27, 2114
232425
SE2132Dec07A.png
December 7, 2132
SE2150Dec19A.png
December 19, 2150
SE2168Dec29A.png
December 29, 2168
26
SE2187Jan09A.png
January 9, 2187

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between May 21, 1993 and May 20, 2069
May 20–21March 9December 25–26October 13–14August 1–2
118120122124126
SE1993May21P.png
May 21, 1993
SE1997Mar09T.png
March 9, 1997
SE2000Dec25P.png
December 25, 2000
SE2004Oct14P.png
October 14, 2004
SE2008Aug01T.png
August 1, 2008
128130132134136
SE2012May20A.png
May 20, 2012
SE2016Mar09T.png
March 9, 2016
SE2019Dec26A.png
December 26, 2019
SE2023Oct14A.png
October 14, 2023
SE2027Aug02T.png
August 2, 2027
138140142144146
SE2031May21A.png
May 21, 2031
SE2035Mar09A.png
March 9, 2035
SE2038Dec26T.png
December 26, 2038
SE2042Oct14A.png
October 14, 2042
SE2046Aug02T.png
August 2, 2046
148150152154156
SE2050May20H.png
May 20, 2050
SE2054Mar09P.png
March 9, 2054
SE2057Dec26T.png
December 26, 2057
SE2061Oct13A.png
October 13, 2061
SE2065Aug02P.png
August 2, 2065
158
SE2069May20P.png
May 20, 2069

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Aug28A.png
August 28, 1802
(Saros 122)
SE1813Jul27T.gif
July 27, 1813
(Saros 123)
SE1824Jun26T.png
June 26, 1824
(Saros 124)
SE1835May27A.gif
May 27, 1835
(Saros 125)
SE1846Apr25H.gif
April 25, 1846
(Saros 126)
SE1857Mar25T.png
March 25, 1857
(Saros 127)
SE1868Feb23A.gif
February 23, 1868
(Saros 128)
SE1879Jan22A.gif
January 22, 1879
(Saros 129)
SE1889Dec22T.png
December 22, 1889
(Saros 130)
SE1900Nov22A.png
November 22, 1900
(Saros 131)
SE1911Oct22A.png
October 22, 1911
(Saros 132)
SE1922Sep21T.png
September 21, 1922
(Saros 133)
SE1933Aug21A.png
August 21, 1933
(Saros 134)
SE1944Jul20A.png
July 20, 1944
(Saros 135)
SE1955Jun20T.png
June 20, 1955
(Saros 136)
SE1966May20A.png
May 20, 1966
(Saros 137)
SE1977Apr18A.png
April 18, 1977
(Saros 138)
SE1988Mar18T.png
March 18, 1988
(Saros 139)
SE1999Feb16A.png
February 16, 1999
(Saros 140)
SE2010Jan15A.png
January 15, 2010
(Saros 141)
SE2020Dec14T.png
December 14, 2020
(Saros 142)
SE2031Nov14H.png
November 14, 2031
(Saros 143)
SE2042Oct14A.png
October 14, 2042
(Saros 144)
SE2053Sep12T.png
September 12, 2053
(Saros 145)
SE2064Aug12T.png
August 12, 2064
(Saros 146)
SE2075Jul13A.png
July 13, 2075
(Saros 147)
SE2086Jun11T.png
June 11, 2086
(Saros 148)
SE2097May11T.png
May 11, 2097
(Saros 149)
Saros150 22van71 SE2108Apr11P.jpg
April 11, 2108
(Saros 150)
Saros151 20van72 SE2119Mar11A.jpg
March 11, 2119
(Saros 151)
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
(Saros 152)
SE2141Jan08A.png
January 8, 2141
(Saros 153)
Saros154 14van71 SE2151Dec08A.jpg
December 8, 2151
(Saros 154)
Saros155 14van71 SE2162Nov07T.jpg
November 7, 2162
(Saros 155)
Saros156 10van69 SE2173Oct07A.jpg
October 7, 2173
(Saros 156)
SE2184Sep04A.png
September 4, 2184
(Saros 157)
Saros158 08van70 SE2195Aug05T.jpg
August 5, 2195
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1811Mar24T.gif
March 24, 1811
(Saros 136)
SE1840Mar04A.gif
March 4, 1840
(Saros 137)
SE1869Feb11A.gif
February 11, 1869
(Saros 138)
SE1898Jan22T.png
January 22, 1898
(Saros 139)
SE1927Jan03A.png
January 3, 1927
(Saros 140)
SE1955Dec14A.png
December 14, 1955
(Saros 141)
SE1984Nov22T.png
November 22, 1984
(Saros 142)
SE2013Nov03H.png
November 3, 2013
(Saros 143)
SE2042Oct14A.png
October 14, 2042
(Saros 144)
SE2071Sep23T.png
September 23, 2071
(Saros 145)
SE2100Sep04T.png
September 4, 2100
(Saros 146)
SE2129Aug15A.png
August 15, 2129
(Saros 147)
SE2158Jul25T.png
July 25, 2158
(Saros 148)
Saros149 30van71 SE2187Jul06T.jpg
July 6, 2187
(Saros 149)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 20, 2042</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Saturday, April 19 and Sunday, April 20, 2042, with a magnitude of 1.0614. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 21 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.1 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of October 2, 2024</span> Annular eclipse

An annular solar eclipse will occur at the Moon’s descending node of orbit on Wednesday, October 2, 2024, with a magnitude of 0.9326. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2 hours before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 21, 2031</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, May 21, 2031, with a magnitude of 0.9589. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.8 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 14, 1955</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, December 14, 1955, with a magnitude of 0.9176. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 24 hours before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 25, 1963</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, January 25, 1963, with a magnitude of 0.9951. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 8.2 days after apogee and 3.7 days before perigee.

<span class="mw-page-title-main">Solar eclipse of November 25, 2049</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of March 20, 2053</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 24, 2060</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 18 hours before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of March 31, 2071</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, March 31, 2071, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 7.2 days after apogee and 6.2 days before perigee.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.4 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.2 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of July 20, 1944</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of March 25, 1857</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Wednesday, March 25 and Thursday, March 26, 1857, with a magnitude of 1.0534. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.

References

  1. "October 13–14, 2042 Annular Solar Eclipse". timeanddate. Retrieved 14 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 August 2024.
  3. "Total Solar Eclipse of 2042 Apr 20". EclipseWise.com. Retrieved 14 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.