Solar eclipse of April 20, 2042 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | 0.2956 |
Magnitude | 1.0614 |
Maximum eclipse | |
Duration | 291 s (4 min 51 s) |
Coordinates | 27°00′N137°18′E / 27°N 137.3°E |
Max. width of band | 210 km (130 mi) |
Times (UTC) | |
Greatest eclipse | 2:17:30 |
References | |
Saros | 139 (31 of 71) |
Catalog # (SE5000) | 9601 |
A total solar eclipse will occur at the Moon's ascending node of orbit between Saturday, April 19 and Sunday, April 20, 2042, [1] with a magnitude of 1.0614. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 21 hours after perigee (on April 19, 2042, at 5:25 UTC), the Moon's apparent diameter will be larger. [2]
The path of totality will be visible from parts of western Indonesia (particularly Sumatra), eastern Malaysia, Brunei and the Philippines. A partial solar eclipse will be visible for parts of South Asia, Southeast Asia, northern Australia, East Asia, Northeast Asia, Hawaii, and northwestern North America.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2042 April 19 at 23:41:45.0 UTC |
First Umbral External Contact | 2042 April 20 at 00:37:26.5 UTC |
First Central Line | 2042 April 20 at 00:38:41.2 UTC |
First Umbral Internal Contact | 2042 April 20 at 00:39:55.9 UTC |
First Penumbral Internal Contact | 2042 April 20 at 01:40:21.0 UTC |
Greatest Eclipse | 2042 April 20 at 02:17:30.1 UTC |
Ecliptic Conjunction | 2042 April 20 at 02:20:31.9 UTC |
Greatest Duration | 2042 April 20 at 02:21:20.1 UTC |
Equatorial Conjunction | 2042 April 20 at 02:32:33.0 UTC |
Last Penumbral Internal Contact | 2042 April 20 at 02:54:18.5 UTC |
Last Umbral Internal Contact | 2042 April 20 at 03:54:56.1 UTC |
Last Central Line | 2042 April 20 at 03:56:09.9 UTC |
Last Umbral External Contact | 2042 April 20 at 03:57:23.7 UTC |
Last Penumbral External Contact | 2042 April 20 at 04:53:11.4 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 1.06144 |
Eclipse Obscuration | 1.12666 |
Gamma | 0.29559 |
Sun Right Ascension | 01h52m12.4s |
Sun Declination | +11°31'19.4" |
Sun Semi-Diameter | 15'55.3" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 01h51m39.9s |
Moon Declination | +11°47'27.9" |
Moon Semi-Diameter | 16'37.6" |
Moon Equatorial Horizontal Parallax | 1°01'01.4" |
ΔT | 79.8 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
April 5 Descending node (full moon) | April 20 Ascending node (new moon) |
---|---|
Penumbral lunar eclipse Lunar Saros 113 | Total solar eclipse Solar Saros 139 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]
Solar eclipse series sets from 2040 to 2043 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | May 11, 2040 Partial | −1.2529 | 124 | November 4, 2040 Partial | 1.0993 | |
129 | April 30, 2041 Total | −0.4492 | 134 | October 25, 2041 Annular | 0.4133 | |
139 | April 20, 2042 Total | 0.2956 | 144 | October 14, 2042 Annular | −0.303 | |
149 | April 9, 2043 Total (non-central) | 1.0031 | 154 | October 3, 2043 Annular (non-central) | 1.0102 |
This eclipse is a part of Saros series 139, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 17, 1501. It contains hybrid eclipses from August 11, 1627 through December 9, 1825 and total eclipses from December 21, 1843 through March 26, 2601. There are no annular eclipses in this set. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality will be produced by member 61 at 7 minutes, 29.22 seconds on July 16, 2186. This date is the longest solar eclipse computed between 4000 BC and AD 6000. [5] All eclipses in this series occur at the Moon’s ascending node of orbit. [6]
Series members 18–39 occur between 1801 and 2200: | ||
---|---|---|
18 | 19 | 20 |
November 29, 1807 | December 9, 1825 | December 21, 1843 |
21 | 22 | 23 |
December 31, 1861 | January 11, 1880 | January 22, 1898 |
24 | 25 | 26 |
February 3, 1916 | February 14, 1934 | February 25, 1952 |
27 | 28 | 29 |
March 7, 1970 | March 18, 1988 | March 29, 2006 |
30 | 31 | 32 |
April 8, 2024 | April 20, 2042 | April 30, 2060 |
33 | 34 | 35 |
May 11, 2078 | May 22, 2096 | June 3, 2114 |
36 | 37 | 38 |
June 13, 2132 | June 25, 2150 | July 5, 2168 |
39 | ||
July 16, 2186 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between July 1, 2000 and July 1, 2076 | ||||
---|---|---|---|---|
July 1–2 | April 19–20 | February 5–7 | November 24–25 | September 12–13 |
117 | 119 | 121 | 123 | 125 |
July 1, 2000 | April 19, 2004 | February 7, 2008 | November 25, 2011 | September 13, 2015 |
127 | 129 | 131 | 133 | 135 |
July 2, 2019 | April 20, 2023 | February 6, 2027 | November 25, 2030 | September 12, 2034 |
137 | 139 | 141 | 143 | 145 |
July 2, 2038 | April 20, 2042 | February 5, 2046 | November 25, 2049 | September 12, 2053 |
147 | 149 | 151 | 153 | 155 |
July 1, 2057 | April 20, 2061 | February 5, 2065 | November 24, 2068 | September 12, 2072 |
157 | ||||
July 1, 2076 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
March 4, 1802 (Saros 117) | February 1, 1813 (Saros 118) | January 1, 1824 (Saros 119) | November 30, 1834 (Saros 120) | October 30, 1845 (Saros 121) |
September 29, 1856 (Saros 122) | August 29, 1867 (Saros 123) | July 29, 1878 (Saros 124) | June 28, 1889 (Saros 125) | May 28, 1900 (Saros 126) |
April 28, 1911 (Saros 127) | March 28, 1922 (Saros 128) | February 24, 1933 (Saros 129) | January 25, 1944 (Saros 130) | December 25, 1954 (Saros 131) |
November 23, 1965 (Saros 132) | October 23, 1976 (Saros 133) | September 23, 1987 (Saros 134) | August 22, 1998 (Saros 135) | July 22, 2009 (Saros 136) |
June 21, 2020 (Saros 137) | May 21, 2031 (Saros 138) | April 20, 2042 (Saros 139) | March 20, 2053 (Saros 140) | February 17, 2064 (Saros 141) |
January 16, 2075 (Saros 142) | December 16, 2085 (Saros 143) | November 15, 2096 (Saros 144) | October 16, 2107 (Saros 145) | September 15, 2118 (Saros 146) |
August 15, 2129 (Saros 147) | July 14, 2140 (Saros 148) | June 14, 2151 (Saros 149) | May 14, 2162 (Saros 150) | April 12, 2173 (Saros 151) |
March 12, 2184 (Saros 152) | February 10, 2195 (Saros 153) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
September 28, 1810 (Saros 131) | September 7, 1839 (Saros 132) | August 18, 1868 (Saros 133) |
July 29, 1897 (Saros 134) | July 9, 1926 (Saros 135) | June 20, 1955 (Saros 136) |
May 30, 1984 (Saros 137) | May 10, 2013 (Saros 138) | April 20, 2042 (Saros 139) |
March 31, 2071 (Saros 140) | March 10, 2100 (Saros 141) | February 18, 2129 (Saros 142) |
January 30, 2158 (Saros 143) | January 9, 2187 (Saros 144) |
A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, March 30, 2033, with a magnitude of 1.0462. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 11 hours after perigee, the Moon's apparent diameter will be larger.
A partial solar eclipse will occur at the Moon's descending node of orbit between Monday, April 10 and Tuesday, April 11, 2051, with a magnitude of 0.9849. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 18 hours after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 11, 2078, with a magnitude of 1.0701. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 16 hours after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 13 hours after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse occurred at the Moon's ascending node of orbit between Thursday, March 17 and Friday, March 18, 1988, with a magnitude of 1.0464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.1 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, February 13 and Wednesday, February 14, 1934, with a magnitude of 1.0321. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.6 days after perigee, the Moon's apparent diameter was smaller.
A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit between Saturday, September 1 and Sunday, September 2, 2035, with a magnitude of 1.032. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days after perigee, the Moon's apparent diameter will be larger.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, September 23, 2033, with a magnitude of 0.689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, August 2, 2046, with a magnitude of 1.0531. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter will be larger.
A partial solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, October 4 and Thursday, October 5, 2051, with a magnitude of 0.6024. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days after perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, January 22, 1898. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, June 26 and Sunday, June 27, 1824, with a magnitude of 1.0578. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days before perigee, the Moon's apparent diameter was larger.