Solar eclipse of April 28, 1911

Last updated
Solar eclipse of April 28, 1911
SE1911Apr28T.png
Map
Type of eclipse
NatureTotal
Gamma −0.2294
Magnitude 1.0562
Maximum eclipse
Duration297 s (4 min 57 s)
Coordinates 1°54′N151°54′W / 1.9°N 151.9°W / 1.9; -151.9
Max. width of band190 km (120 mi)
Times (UTC)
Greatest eclipse22:27:22
References
Saros 127 (52 of 82)
Catalog # (SE5000) 9306

A total solar eclipse occurred at the Moon's ascending node of orbit between Friday, April 28 and Saturday, April 29, 1911, [1] [2] [3] [4] with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.4 days before perigee (on April 30, 1911, at 9:00 UTC), the Moon's apparent diameter was larger. [5]

Contents

Totality was visible from southeastern tip of Australia, Tonga, American Samoa and the Cook Islands. A partial eclipse was visible for parts of Oceania, southern North America, Central America, and the western Caribbean.

Observations

A team of Stonyhurst College, England and Saint Ignatius' College, Riverview, New South Wales made observations in Vavaʻu Islands, Tonga. Members of Stonyhurst College departed from Tilbury, England by ship on February 3 and arrived in Sydney on March 16. The team later departed from Sydney on March 25 and arrived in Vavaʻu on April 2. All the instruments were shipped ashore on April 5. The weather was clear for the next few days, but heavy rain showers fell almost every day starting from April 10. The southeast wind starting on April 26 brought thick and large cirrus clouds. On April 28, one day before the eclipse, there were many clouds, which lasted until the morning of April 29. On April 29, the eclipse day, the sky cleared before the first contact (beginning of the partial phase). Afterwards, some cumulus clouds passed through at first, and the weather remained relatively good. During the totality, weather conditions were good in Neiafu, but some areas about 2 miles (3.2 km) away were affected by cirrostratus clouds, and the sun was not visible until 90 seconds before the third contact (end of the total phase). During the eclipse, there was almost no sound on the island except the chirping of crickets, because the government told the local people to keep quiet and not to light fires to avoid creating smoke and disturbing the observations. The team shipped the instruments back on May 2, and the team members departed the island on May 4. They first arrived in Suva, capital of the Colony of Fiji on May 6, and departed again on May 11 and arrived in Sydney on May 17. The British in charge boarded the ship with the instruments leaving Sydney on June 10 and arriving in Tilbury on July 23. [6]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [7]

April 28, 1911 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1911 April 28 at 19:49:01.8 UTC
First Umbral External Contact1911 April 28 at 20:44:54.8 UTC
First Central Line1911 April 28 at 20:45:58.7 UTC
First Umbral Internal Contact1911 April 28 at 20:47:02.6 UTC
First Penumbral Internal Contact1911 April 28 at 21:45:34.0 UTC
Equatorial Conjunction1911 April 28 at 22:16:23.0 UTC
Ecliptic Conjunction1911 April 28 at 22:24:59.5 UTC
Greatest Eclipse1911 April 28 at 22:27:21.8 UTC
Greatest Duration1911 April 28 at 22:34:25.8 UTC
Last Penumbral Internal Contact1911 April 28 at 23:09:25.1 UTC
Last Umbral Internal Contact1911 April 29 at 00:07:45.8 UTC
Last Central Line1911 April 29 at 00:08:51.3 UTC
Last Umbral External Contact1911 April 29 at 00:09:56.8 UTC
Last Penumbral External Contact1911 April 29 at 01:05:42.7 UTC
April 28, 1911 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.05617
Eclipse Obscuration1.11549
Gamma−0.22939
Sun Right Ascension02h20m34.5s
Sun Declination+14°01'17.3"
Sun Semi-Diameter15'52.8"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension02h20m58.3s
Moon Declination+13°48'41.7"
Moon Semi-Diameter16'29.9"
Moon Equatorial Horizontal Parallax1°00'33.0"
ΔT12.1 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of April–May 1911
April 28
Ascending node (new moon)
May 13
Descending node (full moon)
SE1911Apr28T.png Lunar eclipse chart close-1911May13.png
Total solar eclipse
Solar Saros 127
Penumbral lunar eclipse
Lunar Saros 139

Eclipses in 1911

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 127

Inex

Triad

Solar eclipses of 1910–1913

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [8]

The partial solar eclipse on August 31, 1913 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1910 to 1913
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 May 9, 1910
SE1910May09T.png
Total
−0.9437122 November 2, 1910
SE1910Nov02P.png
Partial
1.0603
127 April 28, 1911
SE1911Apr28T.png
Total
−0.2294132 October 22, 1911
SE1911Oct22A.png
Annular
0.3224
137 April 17, 1912
SE1912Apr17H.png
Hybrid
0.528142 October 10, 1912
SE1912Oct10T.png
Total
−0.4149
147 April 6, 1913
SE1913Apr06P.png
Partial
1.3147152 September 30, 1913
SE1913Sep30P.png
Partial
−1.1005

Saros 127

This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 82 events. The series started with a partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular or hybrid eclipses in this set. The series ends at member 82 as a partial eclipse on March 21, 2452. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 31 at 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occur at the Moon’s ascending node of orbit. [9]

Series members 46–68 occur between 1801 and 2200:
464748
SE1803Feb21T.png
February 21, 1803
SE1821Mar04T.gif
March 4, 1821
SE1839Mar15T.gif
March 15, 1839
495051
SE1857Mar25T.gif
March 25, 1857
SE1875Apr06T.png
April 6, 1875
SE1893Apr16T.png
April 16, 1893
525354
SE1911Apr28T.png
April 28, 1911
SE1929May09T.png
May 9, 1929
SE1947May20T.png
May 20, 1947
555657
SE1965May30T.png
May 30, 1965
SE1983Jun11T.png
June 11, 1983
SE2001Jun21T.png
June 21, 2001
585960
SE2019Jul02T.png
July 2, 2019
SE2037Jul13T.png
July 13, 2037
SE2055Jul24T.png
July 24, 2055
616263
SE2073Aug03T.png
August 3, 2073
SE2091Aug15T.png
August 15, 2091
Saros127 63van82 SE2109Aug26P.jpg
August 26, 2109
646566
Saros127 64van82 SE2127Sep06P.jpg
September 6, 2127
Saros127 65van82 SE2145Sep16P.jpg
September 16, 2145
Saros127 66van82 SE2163Sep28P.jpg
September 28, 2163
6768
Saros127 67van82 SE2181Oct08P.jpg
October 8, 2181
Saros127 68van82 SE2199Oct19P.jpg
October 19, 2199

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 2, 1880 and July 9, 1964
December 2–3September 20–21July 9–10April 26–28February 13–14
111113115117119
SE1880Dec02P.gif
December 2, 1880
SE1888Jul09P.gif
July 9, 1888
SE1892Apr26T.gif
April 26, 1892
SE1896Feb13A.png
February 13, 1896
121123125127129
SE1899Dec03A.gif
December 3, 1899
SE1903Sep21T.png
September 21, 1903
SE1907Jul10A.png
July 10, 1907
SE1911Apr28T.png
April 28, 1911
SE1915Feb14A.png
February 14, 1915
131133135137139
SE1918Dec03A.png
December 3, 1918
SE1922Sep21T.png
September 21, 1922
SE1926Jul09A.png
July 9, 1926
SE1930Apr28H.png
April 28, 1930
SE1934Feb14T.png
February 14, 1934
141143145147149
SE1937Dec02A.png
December 2, 1937
SE1941Sep21T.png
September 21, 1941
SE1945Jul09T.png
July 9, 1945
SE1949Apr28P.png
April 28, 1949
SE1953Feb14P.png
February 14, 1953
151153155
SE1956Dec02P.png
December 2, 1956
SE1960Sep20P.png
September 20, 1960
SE1964Jul09P.png
July 9, 1964

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Mar04T.png
March 4, 1802
(Saros 117)
SE1813Feb01A.gif
February 1, 1813
(Saros 118)
SE1824Jan01A.gif
January 1, 1824
(Saros 119)
SE1834Nov30T.gif
November 30, 1834
(Saros 120)
SE1845Oct30H.png
October 30, 1845
(Saros 121)
SE1856Sep29A.gif
September 29, 1856
(Saros 122)
SE1867Aug29T.png
August 29, 1867
(Saros 123)
SE1878Jul29T.png
July 29, 1878
(Saros 124)
SE1889Jun28A.png
June 28, 1889
(Saros 125)
SE1900May28T.png
May 28, 1900
(Saros 126)
SE1911Apr28T.png
April 28, 1911
(Saros 127)
SE1922Mar28A.png
March 28, 1922
(Saros 128)
SE1933Feb24A.png
February 24, 1933
(Saros 129)
SE1944Jan25T.png
January 25, 1944
(Saros 130)
SE1954Dec25A.png
December 25, 1954
(Saros 131)
SE1965Nov23A.png
November 23, 1965
(Saros 132)
SE1976Oct23T.png
October 23, 1976
(Saros 133)
SE1987Sep23A.png
September 23, 1987
(Saros 134)
SE1998Aug22A.png
August 22, 1998
(Saros 135)
SE2009Jul22T.png
July 22, 2009
(Saros 136)
SE2020Jun21A.png
June 21, 2020
(Saros 137)
SE2031May21A.png
May 21, 2031
(Saros 138)
SE2042Apr20T.png
April 20, 2042
(Saros 139)
SE2053Mar20A.png
March 20, 2053
(Saros 140)
SE2064Feb17A.png
February 17, 2064
(Saros 141)
SE2075Jan16T.png
January 16, 2075
(Saros 142)
SE2085Dec16A.png
December 16, 2085
(Saros 143)
SE2096Nov15A.png
November 15, 2096
(Saros 144)
SE2107Oct16T.png
October 16, 2107
(Saros 145)
SE2118Sep15T.png
September 15, 2118
(Saros 146)
SE2129Aug15A.png
August 15, 2129
(Saros 147)
Saros148 28van75 SE2140Jul14T.jpg
July 14, 2140
(Saros 148)
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
(Saros 149)
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
(Saros 150)
Saros151 23van72 SE2173Apr12A.jpg
April 12, 2173
(Saros 151)
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184
(Saros 152)
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195
(Saros 153)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1824Jun26T.png
June 26, 1824
(Saros 124)
SE1853Jun06A.gif
June 6, 1853
(Saros 125)
SE1882May17T.png
May 17, 1882
(Saros 126)
SE1911Apr28T.png
April 28, 1911
(Saros 127)
SE1940Apr07A.png
April 7, 1940
(Saros 128)
SE1969Mar18A.png
March 18, 1969
(Saros 129)
SE1998Feb26T.png
February 26, 1998
(Saros 130)
SE2027Feb06A.png
February 6, 2027
(Saros 131)
SE2056Jan16A.png
January 16, 2056
(Saros 132)
SE2084Dec27T.png
December 27, 2084
(Saros 133)
SE2113Dec08A.png
December 8, 2113
(Saros 134)
SE2142Nov17A.png
November 17, 2142
(Saros 135)
SE2171Oct29T.png
October 29, 2171
(Saros 136)
SE2200Oct09A.png
October 9, 2200
(Saros 137)

See also

Notes

  1. "April 28–29, 1911 Total Solar Eclipse". timeanddate. Retrieved 31 July 2024.
  2. "SOLAR ECLIPSE TODAY WILL BE ADVANTAGE TO SCIENCE". Billings Evening Journal. Billings, Montana. 1911-04-28. p. 3. Retrieved 2023-11-03 via Newspapers.com.
  3. "The eclipse to be seen". The Southern Star. Bega, New South Wales, Australia. 1911-04-29. p. 2. Retrieved 2023-11-03 via Newspapers.com.
  4. "TO-DAY'S SOLAR ECLIPSE". The Sun. Sydney, New South Wales, Australia. 1911-04-29. p. 1. Retrieved 2023-11-03 via Newspapers.com.
  5. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 31 July 2024.
  6. A. L. Cortie (19 September 1912). "Report on the Total Solar Eclipse of 1911, April 28. (Observed by the Expedition of the Joint Permanent Eclipse Committee to Vavau, Tonga Islands, South Pacific.)". 87 (595). 皇家学会: 293–301. Archived from the original on 10 December 2019.{{cite journal}}: Cite journal requires |journal= (help)
  7. "Total Solar Eclipse of 1911 Apr 28". EclipseWise.com. Retrieved 31 July 2024.
  8. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  9. "NASA - Catalog of Solar Eclipses of Saros 127". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 30, 2033</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, March 30, 2033, with a magnitude of 1.0462. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 14, 1934</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, February 14, 1934, with a magnitude of 1.0321. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from the Dutch East Indies, North Borneo, and the South Seas Mandate of Japan.

<span class="mw-page-title-main">Solar eclipse of September 21, 1922</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 21, 1922, with a magnitude of 1.0678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The greatest eclipse occurred exactly at perigee.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 14, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, February 14, 1953, with a magnitude of 0.7596. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 12, 1950</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, September 12, 1950, with a magnitude of 1.0182. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from eastern Soviet Union on September 12 local time and the whole Semichi Islands in Alaska on September 11 local time.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 1929</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, May 9, 1929, with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Dutch East Indies, Federated Malay States, Siam, French Indochina, Spratly Islands, Philippines, and South Seas Mandate in Japan.

<span class="mw-page-title-main">Solar eclipse of January 5, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, January 5, 2057, with a magnitude of 1.0287. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 21, 1930</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, October 21, 1930, with a magnitude of 1.023. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Niuafoʻou in Tonga, Chile, and a tiny part of Santa Cruz Province, Argentina.

<span class="mw-page-title-main">Solar eclipse of April 20, 2061</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, April 20, 2061, with a magnitude of 1.0475. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 5, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 5, 2065, with a magnitude of 0.9123. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 31, 2068</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 12, 2072</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, September 12, 2072, with a magnitude of 1.0558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 7, 2073</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, February 7, 2073, with a magnitude of 0.6768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 3, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Friday, January 3 and Saturday, January 4, 1908, with a magnitude of 1.0437. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 14 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 22, 1911</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, October 22, 1911, with a magnitude of 0.965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.75 days before apogee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 16, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Monday, March 16, 1942, with a magnitude of 0.6393. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References