Solar eclipse of August 20, 1971

Last updated
Solar eclipse of August 20, 1971
SE1971Aug20P.png
Map
Type of eclipse
NaturePartial
Gamma −1.2659
Magnitude 0.508
Maximum eclipse
Coordinates 61°42′S135°24′E / 61.7°S 135.4°E / -61.7; 135.4
Times (UTC)
Greatest eclipse22:39:31
References
Saros 154 (4 of 71)
Catalog # (SE5000) 9445

A partial solar eclipse occurred at the Moon's descending node of orbit between Friday, August 20 and Saturday, August 21, 1971, [1] with a magnitude of 0.508. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of Australia, Oceania, and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

August 20, 1971 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1971 August 20 at 20:52:59.2 UTC
Greatest Eclipse1971 August 20 at 22:39:31.5 UTC
Ecliptic Conjunction1971 August 20 at 22:54:02.4 UTC
Equatorial Conjunction1971 August 20 at 23:50:24.9 UTC
Last Penumbral External Contact1971 August 21 at 00:25:39.4 UTC
August 20, 1971 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.50797
Eclipse Obscuration0.39282
Gamma−1.26591
Sun Right Ascension09h57m48.0s
Sun Declination+12°25'50.7"
Sun Semi-Diameter15'48.4"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension09h55m45.7s
Moon Declination+11°23'25.4"
Moon Semi-Diameter14'56.3"
Moon Equatorial Horizontal Parallax0°54'49.4"
ΔT41.8 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of July–August 1971
July 22
Descending node (new moon)
August 6
Ascending node (full moon)
August 20
Descending node (new moon)
SE1971Jul22P.png Lunar eclipse chart close-1971Aug06.png SE1971Aug20P.png
Partial solar eclipse
Solar Saros 116
Total lunar eclipse
Lunar Saros 128
Partial solar eclipse
Solar Saros 154

Eclipses in 1971

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 154

Inex

Triad

Solar eclipses of 1968–1971

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on July 22, 1971 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1968 to 1971
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 March 28, 1968
SE1968Mar28P.png
Partial
−1.037124 September 22, 1968
SE1968Sep22T.png
Total
0.9451
129 March 18, 1969
SE1969Mar18A.png
Annular
−0.2704134 September 11, 1969
SE1969Sep11A.png
Annular
0.2201
139
C72pct (4321372614).jpg
Totality in Williamston, NC
USA
March 7, 1970
SE1970Mar07T.png
Total
0.4473144 August 31, 1970
SE1970Aug31A.png
Annular
−0.5364
149 February 25, 1971
SE1971Feb25P.png
Partial
1.1188154 August 20, 1971
SE1971Aug20P.png
Partial
−1.2659

Saros 154

This eclipse is a part of Saros series 154, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 19, 1917. It contains annular eclipses from October 3, 2043 through March 27, 2332; hybrid eclipses from April 7, 2350 through April 29, 2386; and total eclipses from May 9, 2404 through May 29, 3035. The series ends at member 71 as a partial eclipse on August 25, 3179. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 9 at 3 minutes, 41 seconds on October 13, 2061, and the longest duration of totality will be produced by member 35 at 4 minutes, 50 seconds on July 25, 2530. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 1–16 occur between 1917 and 2200:
123
SE1917Jul19P.png
July 19, 1917
SE1935Jul30P.png
July 30, 1935
SE1953Aug09P.png
August 9, 1953
456
SE1971Aug20P.png
August 20, 1971
SE1989Aug31P.png
August 31, 1989
SE2007Sep11P.png
September 11, 2007
789
SE2025Sep21P.png
September 21, 2025
SE2043Oct03A.png
October 3, 2043
SE2061Oct13A.png
October 13, 2061
101112
SE2079Oct24A.png
October 24, 2079
SE2097Nov04A.png
November 4, 2097
SE2115Nov16A.png
November 16, 2115
131415
Saros154 13van71 SE2133Nov26A.jpg
November 26, 2133
Saros154 14van71 SE2151Dec08A.jpg
December 8, 2151
Saros154 15van71 SE2169Dec18A.jpg
December 18, 2169
16
Saros154 16van71 SE2187Dec29A.jpg
December 29, 2187

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29January 14November 1–2August 20–21June 8
108110112114116
SE1884Mar27P.gif
March 27, 1884
SE1895Aug20P.gif
August 20, 1895
SE1899Jun08P.gif
June 8, 1899
118120122124126
SE1903Mar29A.png
March 29, 1903
SE1907Jan14T.png
January 14, 1907
SE1910Nov02P.png
November 2, 1910
SE1914Aug21T.png
August 21, 1914
SE1918Jun08T.png
June 8, 1918
128130132134136
SE1922Mar28A.png
March 28, 1922
SE1926Jan14T.png
January 14, 1926
SE1929Nov01A.png
November 1, 1929
SE1933Aug21A.png
August 21, 1933
SE1918Jun08T.png
June 8, 1937
138140142144146
SE1941Mar27A.png
March 27, 1941
SE1945Jan14A.png
January 14, 1945
SE1948Nov01T.png
November 1, 1948
SE1952Aug20A.png
August 20, 1952
SE1956Jun08T.png
June 8, 1956
148150152154
SE1960Mar27P.png
March 27, 1960
SE1964Jan14P.png
January 14, 1964
SE1967Nov02T.png
November 2, 1967
SE1971Aug20P.png
August 20, 1971

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1982
SE1807Nov29H.gif
November 29, 1807
(Saros 139)
SE1818Oct29T.gif
October 29, 1818
(Saros 140)
SE1829Sep28A.gif
September 28, 1829
(Saros 141)
SE1840Aug27T.gif
August 27, 1840
(Saros 142)
SE1851Jul28T.png
July 28, 1851
(Saros 143)
SE1862Jun27P.gif
June 27, 1862
(Saros 144)
SE1873May26P.gif
May 26, 1873
(Saros 145)
SE1884Apr25P.gif
April 25, 1884
(Saros 146)
SE1895Mar26P.gif
March 26, 1895
(Saros 147)
SE1906Feb23P.png
February 23, 1906
(Saros 148)
SE1917Jan23P.png
January 23, 1917
(Saros 149)
SE1927Dec24P.png
December 24, 1927
(Saros 150)
SE1938Nov21P.png
November 21, 1938
(Saros 151)
SE1949Oct21P.png
October 21, 1949
(Saros 152)
SE1960Sep20P.png
September 20, 1960
(Saros 153)
SE1971Aug20P.png
August 20, 1971
(Saros 154)
SE1982Jul20P.png
July 20, 1982
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1826Nov29P.gif
November 29, 1826
(Saros 149)
SE1855Nov09P.png
November 9, 1855
(Saros 150)
SE1884Oct19P.gif
October 19, 1884
(Saros 151)
SE1913Sep30P.png
September 30, 1913
(Saros 152)
SE1942Sep10P.png
September 10, 1942
(Saros 153)
SE1971Aug20P.png
August 20, 1971
(Saros 154)
SE2000Jul31P.png
July 31, 2000
(Saros 155)
SE2029Jul11P.png
July 11, 2029
(Saros 156)
SE2058Jun21P.png
June 21, 2058
(Saros 157)
SE2087Jun01P.png
June 1, 2087
(Saros 158)
Saros161 01van72 SE2174Apr01P.jpg
April 1, 2174
(Saros 161)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of July 1, 2011</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Friday, July 1, 2011, with a magnitude of 0.0971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s ascending node of orbit on Saturday, July 1, 2000, with a magnitude of 0.4768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 12, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 12, 2029, with a magnitude of 0.4576. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 25, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Wednesday, September 24 and Thursday, September 25, 2098, with a magnitude of 0.7871. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 31, 1989</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 20, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 20, 1982, with a magnitude of 0.4643. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 20, 1974</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, June 20, 1974, with a magnitude of 1.0592. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the view of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.4 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 4, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, January 4, 1973, with a magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.75 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of July 22, 1971</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 22, 1971, with a magnitude of 0.0689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 11, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, July 11, 1953, with a magnitude of 0.2015. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 23, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 23, 2047, with a magnitude of 0.3129. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 20, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, May 20, 2069, with a magnitude of 0.0879. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 3, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 12, 2094</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 12, 2094, with a magnitude of 0.4224. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 15, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Wednesday, July 14 and Thursday, July 15, 2083, with a magnitude of 0.0168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 10, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 12, 1931</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 12, 1931, with a magnitude of 0.0471. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 19, 1917</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Tuesday, June 19, 1917, with a magnitude of 0.4729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "August 20–21, 1971 Partial Solar Eclipse". timeanddate. Retrieved 8 August 2024.
  2. "Partial Solar Eclipse of 1971 Aug 20". EclipseWise.com. Retrieved 8 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 154". eclipse.gsfc.nasa.gov.