Solar eclipse of August 20, 1971 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | −1.2659 |
Magnitude | 0.508 |
Maximum eclipse | |
Coordinates | 61°42′S135°24′E / 61.7°S 135.4°E |
Times (UTC) | |
Greatest eclipse | 22:39:31 |
References | |
Saros | 154 (4 of 71) |
Catalog # (SE5000) | 9445 |
A partial solar eclipse occurred at the Moon's descending node of orbit between Friday, August 20 and Saturday, August 21, 1971, with a magnitude of 0.508. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was visible near sunrise on August 21 over parts of Australia.
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]
The partial solar eclipse on July 22, 1971 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 1968 to 1971 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | March 28, 2968 Partial | −1.037 | 124 | September 22, 1968 Total | 0.9451 | |
129 | March 18, 1969 Annular | −0.2704 | 134 | September 11, 1969 Annular | 0.2201 | |
139 Totality in Williamston, NC USA | March 7, 1970 Total | 0.4473 | 144 | August 31, 1970 Annular | −0.5364 | |
149 | February 25, 1971 Partial | 1.1188 | 154 | August 20, 1971 Partial | −1.2659 |
This eclipse is a part of Saros series 154, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 19, 1917. It contains annular eclipses from October 3, 2043 through March 27, 2332; hybrid eclipses from April 7, 2350 through April 29, 2386; and total eclipses from May 9, 2404 through May 29, 3035. The series ends at member 71 as a partial eclipse on August 25, 3179. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 9 at 3 minutes, 41 seconds on October 13, 2061, and the longest duration of totality will be produced by member 35 at 4 minutes, 50 seconds on July 25, 2530. All eclipses in this series occur at the Moon’s descending node of orbit. [2]
Series members 1–16 occur between 1917 and 2200: | ||
---|---|---|
1 | 2 | 3 |
July 19, 1917 | July 30, 1935 | August 9, 1953 |
4 | 5 | 6 |
August 20, 1971 | August 31, 1989 | September 11, 2007 |
7 | 8 | 9 |
September 21, 2025 | October 3, 2043 | October 13, 2061 |
10 | 11 | 12 |
October 24, 2079 | November 4, 2097 | November 16, 2115 |
13 | 14 | 15 |
November 26, 2133 | December 8, 2151 | December 18, 2169 |
16 | ||
December 29, 2187 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between March 27, 1884 and August 20, 1971 | ||||
---|---|---|---|---|
March 27–29 | January 14 | November 1–2 | August 20–21 | June 8 |
108 | 110 | 112 | 114 | 116 |
March 27, 1884 | August 20, 1895 | June 8, 1899 | ||
118 | 120 | 122 | 124 | 126 |
March 29, 1903 | January 14, 1907 | November 2, 1910 | August 21, 1914 | June 8, 1918 |
128 | 130 | 132 | 134 | 136 |
March 28, 1922 | January 14, 1926 | November 1, 1929 | August 21, 1933 | June 8, 1937 |
138 | 140 | 142 | 144 | 146 |
March 27, 1941 | January 14, 1945 | November 1, 1948 | August 20, 1952 | June 8, 1956 |
148 | 150 | 152 | 154 | |
March 27, 1960 | January 14, 1964 | November 2, 1967 | August 20, 1971 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 1982 | ||||
---|---|---|---|---|
November 29, 1807 (Saros 139) | October 29, 1818 (Saros 140) | September 28, 1829 (Saros 141) | August 27, 1840 (Saros 142) | July 28, 1851 (Saros 143) |
June 27, 1862 (Saros 144) | May 26, 1873 (Saros 145) | April 25, 1884 (Saros 146) | March 26, 1895 (Saros 147) | February 23, 1906 (Saros 148) |
January 23, 1917 (Saros 149) | December 24, 1927 (Saros 150) | November 21, 1938 (Saros 151) | October 21, 1949 (Saros 152) | September 20, 1960 (Saros 153) |
August 20, 1971 (Saros 154) | July 20, 1982 (Saros 155) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
November 29, 1826 (Saros 149) | November 9, 1855 (Saros 150) | October 19, 1884 (Saros 151) |
September 30, 1913 (Saros 152) | September 10, 1942 (Saros 153) | August 20, 1971 (Saros 154) |
July 31, 2000 (Saros 155) | July 11, 2029 (Saros 156) | June 21, 2058 (Saros 157) |
June 1, 2087 (Saros 158) | ||
April 1, 2174 (Saros 161) |
A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, April 11, 2051, with a magnitude of 0.9849. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 12, 2029, with a magnitude of 0.4576. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The eclipse will be visible from Northern and Central Europe, northern Russia, Arctic, Greenland, and northern North America.
A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 11, 1988, with a magnitude of 0.9377. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in southeastern Somalia, the Indian Ocean and Macquarie Island of Australia.
An annular solar eclipse occurred at the Moon's descending node of orbit between Monday, August 31 and Tuesday, September 1, 1970, with a magnitude of 0.94. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Territory of Papua and New Guinea, Gilbert and Ellice Islands on September 1 (Tuesday), West Samoa and the whole American Samoa except Swains Island on August 31 (Monday).
A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, July 22, 2047, with a magnitude of 0.3604. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit on Friday, May 20, 2050, with a magnitude of 1.0038. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, October 21, 1930, with a magnitude of 1.023. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Niuafoʻou in Tonga, Chile, and a tiny part of Santa Cruz Province, Argentina.
A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse will pass through the Chilean cities of Valparaíso and the capital Santiago.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, July 3, 2084, with a magnitude of 0.9421. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.
An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, July 15, 2083, with a magnitude of 0.0168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This will be the 72nd and final event from Solar Saros 118.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Monday, March 16, 1942, with a magnitude of 0.6393. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 31, 1913, with a magnitude of 0.1513. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Tuesday, June 19, 1917, with a magnitude of 0.4729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.