Solar eclipse of March 28, 1922

Last updated
Solar eclipse of March 28, 1922
SE1922Mar28A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.1711
Magnitude 0.9381
Maximum eclipse
Duration470 s (7 min 50 s)
Coordinates 12°18′N18°00′W / 12.3°N 18°W / 12.3; -18
Max. width of band233 km (145 mi)
Times (UTC)
Greatest eclipse13:05:26
References
Saros 128 (53 of 73)
Catalog # (SE5000) 9332

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, March 28, 1922, [1] with a magnitude of 0.9381. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.75 days after apogee (on March 25, 1922, at 19:30 UTC), the Moon's apparent diameter was smaller. [2]

Contents

Annularity was visible from Peru, Brazil, French West Africa (parts now belonging to Senegal, Mauritania and Mali), British Gambia (today's Gambia) including capital Banjul, French Algeria (today's Algeria), Italian Libya (today's Libya), Egypt, Kingdom of Hejaz and Sultanate of Nejd (now belonging to Saudi Arabia), and British Kuwait. A partial eclipse was visible for parts of South America, the Caribbean, North Africa, Central Africa, Europe, and the Middle East.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

March 28, 1922 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1922 March 28 at 10:01:22.5 UTC
First Umbral External Contact1922 March 28 at 11:06:26.9 UTC
First Central Line1922 March 28 at 11:09:09.9 UTC
First Umbral Internal Contact1922 March 28 at 11:11:53.0 UTC
First Penumbral Internal Contact1922 March 28 at 12:18:44.5 UTC
Ecliptic Conjunction1922 March 28 at 13:03:23.4 UTC
Greatest Eclipse1922 March 28 at 13:05:25.8 UTC
Greatest Duration1922 March 28 at 13:06:46.6 UTC
Equatorial Conjunction1922 March 28 at 13:11:48.1 UTC
Last Penumbral Internal Contact1922 March 28 at 13:51:56.9 UTC
Last Umbral Internal Contact1922 March 28 at 14:58:55.1 UTC
Last Central Line1922 March 28 at 15:01:36.7 UTC
Last Umbral External Contact1922 March 28 at 15:04:18.1 UTC
Last Penumbral External Contact1922 March 28 at 16:09:22.4 UTC
March 28, 1922 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.93810
Eclipse Obscuration0.88002
Gamma0.17106
Sun Right Ascension00h25m58.2s
Sun Declination+02°48'27.5"
Sun Semi-Diameter16'01.1"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension00h25m47.1s
Moon Declination+02°57'17.9"
Moon Semi-Diameter14'48.3"
Moon Equatorial Horizontal Parallax0°54'20.0"
ΔT22.5 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of March–April 1922
March 13
Ascending node (full moon)
March 28
Descending node (new moon)
April 11
Ascending node (full moon)
Lunar eclipse chart close-1922Mar13.png SE1922Mar28A.png Lunar eclipse chart close-1922Apr11.png
Penumbral lunar eclipse
Lunar Saros 102
Annular solar eclipse
Solar Saros 128
Penumbral lunar eclipse
Lunar Saros 140

Eclipses in 1922

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 128

Inex

Triad

Solar eclipses of 1921–1924

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on July 31, 1924 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1921 to 1924
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 April 8, 1921
SE1921Apr08A.png
Annular
0.8869123 October 1, 1921
SE1921Oct01T.png
Total
−0.9383
128 March 28, 1922
SE1922Mar28A.png
Annular
0.1711133 September 21, 1922
SE1922Sep21T.png
Total
−0.213
138 March 17, 1923
SE1923Mar17A.png
Annular
−0.5438143 September 10, 1923
SE1923Sep10T.png
Total
0.5149
148 March 5, 1924
SE1924Mar05P.png
Partial
−1.2232153 August 30, 1924
SE1924Aug30P.png
Partial
1.3123

Saros 128

This eclipse is a part of Saros series 128, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 29, 984 AD. It contains total eclipses from May 16, 1417 through June 18, 1471; hybrid eclipses from June 28, 1489 through July 31, 1543; and annular eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 27 at 1 minutes, 45 seconds on June 7, 1453, and the longest duration of annularity was produced by member 48 at 8 minutes, 35 seconds on February 1, 1832. All eclipses in this series occur at the Moon’s descending node of orbit. [5]

Series members 47–68 occur between 1801 and 2200:
474849
SE1814Jan21A.gif
January 21, 1814
SE1832Feb01A.gif
February 1, 1832
SE1850Feb12A.gif
February 12, 1850
505152
SE1868Feb23A.gif
February 23, 1868
SE1886Mar05A.gif
March 5, 1886
SE1904Mar17A.png
March 17, 1904
535455
SE1922Mar28A.png
March 28, 1922
SE1940Apr07A.png
April 7, 1940
SE1958Apr19A.png
April 19, 1958
565758
SE1976Apr29A.png
April 29, 1976
SE1994May10A.png
May 10, 1994
SE2012May20A.png
May 20, 2012
596061
SE2030Jun01A.png
June 1, 2030
SE2048Jun11A.png
June 11, 2048
SE2066Jun22A.png
June 22, 2066
626364
SE2084Jul03A.png
July 3, 2084
SE2102Jul15A.png
July 15, 2102
SE2120Jul25A.png
July 25, 2120
656667
Saros128 65van73 SE2138Aug05P.jpg
August 5, 2138
Saros128 66van73 SE2156Aug16P.jpg
August 16, 2156
Saros128 67van73 SE2174Aug27P.jpg
August 27, 2174
68
Saros128 68van73 SE2192Sep06P.jpg
September 6, 2192

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29January 14November 1–2August 20–21June 8
108110112114116
SE1884Mar27P.gif
March 27, 1884
SE1895Aug20P.gif
August 20, 1895
SE1899Jun08P.gif
June 8, 1899
118120122124126
SE1903Mar29A.png
March 29, 1903
SE1907Jan14T.png
January 14, 1907
SE1910Nov02P.png
November 2, 1910
SE1914Aug21T.png
August 21, 1914
SE1918Jun08T.png
June 8, 1918
128130132134136
SE1922Mar28A.png
March 28, 1922
SE1926Jan14T.png
January 14, 1926
SE1929Nov01A.png
November 1, 1929
SE1933Aug21A.png
August 21, 1933
SE1918Jun08T.png
June 8, 1937
138140142144146
SE1941Mar27A.png
March 27, 1941
SE1945Jan14A.png
January 14, 1945
SE1948Nov01T.png
November 1, 1948
SE1952Aug20A.png
August 20, 1952
SE1956Jun08T.png
June 8, 1956
148150152154
SE1960Mar27P.png
March 27, 1960
SE1964Jan14P.png
January 14, 1964
SE1967Nov02T.png
November 2, 1967
SE1971Aug20P.png
August 20, 1971

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Mar04T.png
March 4, 1802
(Saros 117)
SE1813Feb01A.gif
February 1, 1813
(Saros 118)
SE1824Jan01A.gif
January 1, 1824
(Saros 119)
SE1834Nov30T.gif
November 30, 1834
(Saros 120)
SE1845Oct30H.png
October 30, 1845
(Saros 121)
SE1856Sep29A.gif
September 29, 1856
(Saros 122)
SE1867Aug29T.png
August 29, 1867
(Saros 123)
SE1878Jul29T.png
July 29, 1878
(Saros 124)
SE1889Jun28A.png
June 28, 1889
(Saros 125)
SE1900May28T.png
May 28, 1900
(Saros 126)
SE1911Apr28T.png
April 28, 1911
(Saros 127)
SE1922Mar28A.png
March 28, 1922
(Saros 128)
SE1933Feb24A.png
February 24, 1933
(Saros 129)
SE1944Jan25T.png
January 25, 1944
(Saros 130)
SE1954Dec25A.png
December 25, 1954
(Saros 131)
SE1965Nov23A.png
November 23, 1965
(Saros 132)
SE1976Oct23T.png
October 23, 1976
(Saros 133)
SE1987Sep23A.png
September 23, 1987
(Saros 134)
SE1998Aug22A.png
August 22, 1998
(Saros 135)
SE2009Jul22T.png
July 22, 2009
(Saros 136)
SE2020Jun21A.png
June 21, 2020
(Saros 137)
SE2031May21A.png
May 21, 2031
(Saros 138)
SE2042Apr20T.png
April 20, 2042
(Saros 139)
SE2053Mar20A.png
March 20, 2053
(Saros 140)
SE2064Feb17A.png
February 17, 2064
(Saros 141)
SE2075Jan16T.png
January 16, 2075
(Saros 142)
SE2085Dec16A.png
December 16, 2085
(Saros 143)
SE2096Nov15A.png
November 15, 2096
(Saros 144)
SE2107Oct16T.png
October 16, 2107
(Saros 145)
SE2118Sep15T.png
September 15, 2118
(Saros 146)
SE2129Aug15A.png
August 15, 2129
(Saros 147)
Saros148 28van75 SE2140Jul14T.jpg
July 14, 2140
(Saros 148)
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
(Saros 149)
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
(Saros 150)
Saros151 23van72 SE2173Apr12A.jpg
April 12, 2173
(Saros 151)
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184
(Saros 152)
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195
(Saros 153)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1806Jun16T.png
June 16, 1806
(Saros 124)
SE1835May27A.gif
May 27, 1835
(Saros 125)
SE1864May06H.gif
May 6, 1864
(Saros 126)
SE1893Apr16T.png
April 16, 1893
(Saros 127)
SE1922Mar28A.png
March 28, 1922
(Saros 128)
SE1951Mar07A.png
March 7, 1951
(Saros 129)
SE1980Feb16T.png
February 16, 1980
(Saros 130)
SE2009Jan26A.png
January 26, 2009
(Saros 131)
SE2038Jan05A.png
January 5, 2038
(Saros 132)
SE2066Dec17T.png
December 17, 2066
(Saros 133)
SE2095Nov27A.png
November 27, 2095
(Saros 134)
SE2124Nov06A.png
November 6, 2124
(Saros 135)
SE2153Oct17T.png
October 17, 2153
(Saros 136)
SE2182Sep27A.png
September 27, 2182
(Saros 137)

Notes

  1. "March 28, 1922 Annular Solar Eclipse". timeanddate. Retrieved 2 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 2 August 2024.
  3. "Annular Solar Eclipse of 1922 Mar 28". EclipseWise.com. Retrieved 2 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 128". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of August 24, 2063</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 30, 1984</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, May 30, 1984, with a magnitude of 0.998. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Mexico, the United States, Azores Islands, Morocco and Algeria. It was the first annular solar eclipse visible in the US in 33 years. The Moon's apparent diameter was near the average diameter because it occurred 6.7 days after apogee and 7.8 days before perigee.

<span class="mw-page-title-main">Solar eclipse of August 21, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Italian Libya, Egypt, Mandatory Palestine including Jerusalem and Amman, French Mandate for Syria and the Lebanon, Iraq including Baghdad, Persia, Afghanistan, British Raj, Siam, Dutch East Indies, North Borneo, and Australia.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 24, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973, with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from southern Mexico, southwestern Nicaragua, Costa Rica including the capital city San José, Panama, Colombia including the capital city Bogotá, southern Venezuela, Brazil, southern Guyana, southern Dutch Guiana, southern French Guiana, Portuguese Cape Verde including the capital city Praia, Mauritania including the capital city Nouakchott, Spanish Sahara, Mali, and Algeria.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 4, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, January 4, 1973, with a magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile and Argentina.

<span class="mw-page-title-main">Solar eclipse of September 11, 1969</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, September 11, 1969, with a magnitude of 0.969. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Pacific Ocean, Peru, Bolivia and the southwestern tip of Brazilian state Mato Grosso. Places west of the International Date Line witnessed the eclipse on Friday, September 12, 1969.

<span class="mw-page-title-main">Solar eclipse of September 1, 1951</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 1, 1951, with a magnitude of 0.9747. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the United States, Spanish Sahara, French West Africa, British Gold Coast, southern tip of French Equatorial Africa, Belgian Congo, Northern Rhodesia, Portuguese Mozambique, Nyasaland, and French Madagascar.

<span class="mw-page-title-main">Solar eclipse of August 10, 1915</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit between Tuesday, August 10 and Wednesday, August 11, 1915, with a magnitude of 0.9853. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 5.8 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2060</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

References