Solar eclipse of December 2, 1937

Last updated
Solar eclipse of December 2, 1937
SE1937Dec02A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.4389
Magnitude 0.9184
Maximum eclipse
Duration720 s (12 min 0 s)
Coordinates 4°00′N167°48′W / 4°N 167.8°W / 4; -167.8
Max. width of band344 km (214 mi)
Times (UTC)
Greatest eclipse23:05:45
References
Saros 141 (19 of 70)
Catalog # (SE5000) 9370

An annular solar eclipse occurred at the Moon's ascending node of orbit between Thursday, December 2 and Friday, December 3, 1937, [1] with a magnitude of 0.9184. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 18 hours before apogee (on December 3, 1937, at 16:50 UTC), the Moon's apparent diameter was smaller. [2]

Contents

The duration of annularity at maximum eclipse (closest to but slightly shorter than the longest duration) was 12 minutes, 0.33 seconds in the Pacific Ocean. It was the longest annular solar eclipse since December 25, 1628, but the Solar eclipse of December 14, 1955 lasted longer. [3]

Annularity was visible from Ogasawara, Tokyo and South Seas Mandate (the part now belonging to Marshall Islands) in Japan, and Gilbert and Ellice Islands (the part now belonging to Kiribati). A partial eclipse was visible for parts of East Asia, northern Oceania, Hawaii, and western North America.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [4]

December 2, 1937 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1937 December 02 at 20:05:29.6 UTC
First Umbral External Contact1937 December 02 at 21:14:57.2 UTC
First Central Line1937 December 02 at 21:18:43.1 UTC
First Umbral Internal Contact1937 December 02 at 21:22:30.7 UTC
Equatorial Conjunction1937 December 02 at 23:03:27.6 UTC
Greatest Eclipse1937 December 02 at 23:05:45.1 UTC
Greatest Duration1937 December 02 at 23:07:42.3 UTC
Ecliptic Conjunction1937 December 02 at 23:11:03.1 UTC
Last Umbral Internal Contact1937 December 03 at 00:49:00.8 UTC
Last Central Line1937 December 03 at 00:52:48.8 UTC
Last Umbral External Contact1937 December 03 at 00:56:35.2 UTC
Last Penumbral External Contact1937 December 03 at 02:06:02.7 UTC
December 2, 1937 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.91842
Eclipse Obscuration0.84349
Gamma0.43886
Sun Right Ascension16h35m02.2s
Sun Declination-22°00'36.6"
Sun Semi-Diameter16'13.6"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension16h35m06.6s
Moon Declination-21°37'01.0"
Moon Semi-Diameter14'42.2"
Moon Equatorial Horizontal Parallax0°53'57.6"
ΔT24.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of November–December 1937
November 18
Descending node (full moon)
December 2
Ascending node (new moon)
Lunar eclipse chart close-1937Nov18.png SE1937Dec02A.png
Partial lunar eclipse
Lunar Saros 115
Annular solar eclipse
Solar Saros 141

Eclipses in 1937

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 141

Inex

Triad

Solar eclipses of 1935–1938

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]

The partial solar eclipses on February 3, 1935 and July 30, 1935 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1935 to 1938
Ascending node Descending node
SarosMapGammaSarosMapGamma
111 January 5, 1935
SE1935Jan05P.png
Partial
−1.5381116 June 30, 1935
SE1935Jun30P.png
Partial
1.3623
121 December 25, 1935
SE1935Dec25A.png
Annular
−0.9228126 June 19, 1936
SE1936Jun19T.png
Total
0.5389
131 December 13, 1936
SE1936Dec13A.png
Annular
−0.2493136
Kanton total eclipse June8, 1937.jpg
Totality in Kanton Island,
Kiribati
June 8, 1937
SE1937Jun08T.png
Total
−0.2253
141 December 2, 1937
SE1937Dec02A.png
Annular
0.4389146 May 29, 1938
SE1938May29T.png
Total
−0.9607
151 November 21, 1938
SE1938Nov21P.png
Partial
1.1077

Saros 141

This eclipse is a part of Saros series 141, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 19, 1613. It contains annular eclipses from August 4, 1739 through October 14, 2640. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on June 13, 2857. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 20 at 12 minutes, 9 seconds on December 14, 1955. All eclipses in this series occur at the Moon’s ascending node of orbit. [6]

Series members 12–33 occur between 1801 and 2200:
121314
SE1811Sep17A.png
September 17, 1811
SE1829Sep28A.png
September 28, 1829
SE1847Oct09A.png
October 9, 1847
151617
SE1865Oct19A.png
October 19, 1865
SE1883Oct30A.png
October 30, 1883
SE1901Nov11A.png
November 11, 1901
181920
SE1919Nov22A.png
November 22, 1919
SE1937Dec02A.png
December 2, 1937
SE1955Dec14A.png
December 14, 1955
212223
SE1973Dec24A.png
December 24, 1973
SE1992Jan04A.png
January 4, 1992
SE2010Jan15A.png
January 15, 2010
242526
SE2028Jan26A.png
January 26, 2028
SE2046Feb05A.png
February 5, 2046
SE2064Feb17A.png
February 17, 2064
272829
SE2082Feb27A.png
February 27, 2082
SE2100Mar10A.png
March 10, 2100
SE2118Mar22A.png
March 22, 2118
303132
SE2136Apr01A.png
April 1, 2136
SE2154Apr12A.png
April 12, 2154
SE2172Apr23A.png
April 23, 2172
33
SE2190May04A.png
May 4, 2190

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 2, 1880 and July 9, 1964
December 2–3September 20–21July 9–10April 26–28February 13–14
111113115117119
SE1880Dec02P.gif
December 2, 1880
SE1888Jul09P.gif
July 9, 1888
SE1892Apr26T.gif
April 26, 1892
SE1896Feb13A.png
February 13, 1896
121123125127129
SE1899Dec03A.gif
December 3, 1899
SE1903Sep21T.png
September 21, 1903
SE1907Jul10A.png
July 10, 1907
SE1911Apr28T.png
April 28, 1911
SE1915Feb14A.png
February 14, 1915
131133135137139
SE1918Dec03A.png
December 3, 1918
SE1922Sep21T.png
September 21, 1922
SE1926Jul09A.png
July 9, 1926
SE1930Apr28H.png
April 28, 1930
SE1934Feb14T.png
February 14, 1934
141143145147149
SE1937Dec02A.png
December 2, 1937
SE1941Sep21T.png
September 21, 1941
SE1945Jul09T.png
July 9, 1945
SE1949Apr28P.png
April 28, 1949
SE1953Feb14P.png
February 14, 1953
151153155
SE1956Dec02P.png
December 2, 1956
SE1960Sep20P.png
September 20, 1960
SE1964Jul09P.png
July 9, 1964

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2134
SE1806Dec10A.gif
December 10, 1806
(Saros 129)
SE1817Nov09T.gif
November 9, 1817
(Saros 130)
SE1828Oct09A.gif
October 9, 1828
(Saros 131)
SE1839Sep07A.png
September 7, 1839
(Saros 132)
SE1850Aug07T.gif
August 7, 1850
(Saros 133)
SE1861Jul08A.gif
July 8, 1861
(Saros 134)
SE1872Jun06A.gif
June 6, 1872
(Saros 135)
SE1883May06T.png
May 6, 1883
(Saros 136)
SE1894Apr06H.gif
April 6, 1894
(Saros 137)
SE1905Mar06A.png
March 6, 1905
(Saros 138)
SE1916Feb03T.png
February 3, 1916
(Saros 139)
SE1927Jan03A.png
January 3, 1927
(Saros 140)
SE1937Dec02A.png
December 2, 1937
(Saros 141)
SE1948Nov01T.png
November 1, 1948
(Saros 142)
SE1959Oct02T.png
October 2, 1959
(Saros 143)
SE1970Aug31A.png
August 31, 1970
(Saros 144)
SE1981Jul31T.png
July 31, 1981
(Saros 145)
SE1992Jun30T.png
June 30, 1992
(Saros 146)
SE2003May31A.png
May 31, 2003
(Saros 147)
SE2014Apr29A.png
April 29, 2014
(Saros 148)
SE2025Mar29P.png
March 29, 2025
(Saros 149)
SE2036Feb27P.png
February 27, 2036
(Saros 150)
SE2047Jan26P.png
January 26, 2047
(Saros 151)
SE2057Dec26T.png
December 26, 2057
(Saros 152)
SE2068Nov24P.png
November 24, 2068
(Saros 153)
SE2079Oct24A.png
October 24, 2079
(Saros 154)
SE2090Sep23T.png
September 23, 2090
(Saros 155)
Saros156 06van69 SE2101Aug24P.jpg
August 24, 2101
(Saros 156)
Saros157 04van70 SE2112Jul23P.jpg
July 23, 2112
(Saros 157)
Saros158 04van70 SE2123Jun23P.jpg
June 23, 2123
(Saros 158)
Saros159 01van70 SE2134May23P.jpg
May 23, 2134
(Saros 159)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1822Feb21A.gif
February 21, 1822
(Saros 137)
SE1851Feb01A.gif
February 1, 1851
(Saros 138)
SE1880Jan11T.gif
January 11, 1880
(Saros 139)
SE1908Dec23H.png
December 23, 1908
(Saros 140)
SE1937Dec02A.png
December 2, 1937
(Saros 141)
SE1966Nov12T.png
November 12, 1966
(Saros 142)
SE1995Oct24T.png
October 24, 1995
(Saros 143)
SE2024Oct02A.png
October 2, 2024
(Saros 144)
SE2053Sep12T.png
September 12, 2053
(Saros 145)
SE2082Aug24T.png
August 24, 2082
(Saros 146)
SE2111Aug04A.png
August 4, 2111
(Saros 147)
Saros148 28van75 SE2140Jul14T.jpg
July 14, 2140
(Saros 148)
Saros149 29van71 SE2169Jun25T.jpg
June 25, 2169
(Saros 149)
Saros150 27van71 SE2198Jun04A.jpg
June 4, 2198
(Saros 150)

Notes

  1. "December 2–3, 1937 Annular Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 3 August 2024.
  3. "Annular Solar Eclipses with Durations Exceeding 11m 00s: -3999 to 6000". NASA Eclipse Web Site.
  4. "Annular Solar Eclipse of 1937 Dec 02". EclipseWise.com. Retrieved 3 August 2024.
  5. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. "NASA - Catalog of Solar Eclipses of Saros 141". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 16, 1999</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, February 16, 1999, with a magnitude of 0.9928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the southern Indian Ocean including the Prince Edward Islands, South Africa, and Australia.

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 17, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, April 17, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 24, 1992</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, December 24, 1992, with a magnitude of 0.8422. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 22, 1979</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 22, 1979, with a magnitude of 0.9329. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. A small annular eclipse covered only 93% of the Sun in a very broad path, 953 km wide at maximum, and lasted 6 minutes and 3 seconds. This was the second solar eclipse in 1979, the first one a total solar eclipse on February 26.

<span class="mw-page-title-main">Solar eclipse of December 13, 1974</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, December 13, 1974, with a magnitude of 0.8266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 20, 1952</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 20, 1952, with a magnitude of 0.942. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru including the capital city Lima, northeastern Chile, Bolivia including the constitutional capital Sucre and seat of government La Paz, Argentina, Paraguay, southern Brazil and Uruguay.

<span class="mw-page-title-main">Solar eclipse of November 15, 2077</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 15, 2077, with a magnitude of 0.9371. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partially obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross North America and South America. This will be the 47th solar eclipse of Saros cycle 134. A small annular eclipse will cover only 93.71% of the Sun in a very broad path, 262 km wide at maximum, and will last 7 minutes and 54 seconds. Occurring only 4 days after apogee, the Moon's apparent diameter is smaller.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 13, 2061</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References