Solar eclipse of May 9, 1929

Last updated
Solar eclipse of May 9, 1929
SE1929May09T.png
Map
Type of eclipse
NatureTotal
Gamma −0.2887
Magnitude 1.0562
Maximum eclipse
Duration307 s (5 min 7 s)
Coordinates 1°36′N92°42′E / 1.6°N 92.7°E / 1.6; 92.7
Max. width of band193 km (120 mi)
Times (UTC)
Greatest eclipse6:10:34
References
Saros 127 (53 of 82)
Catalog # (SE5000) 9349

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, May 9, 1929, with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Dutch East Indies (today's Indonesia), Federated Malay States (now belonging to Malaysia), Siam (name changed to Thailand later), French Indochina (the part now belonging to Vietnam), Spratly Islands, Philippines, and South Seas Mandate in Japan (the part now belonging to FS Micronesia).

Contents

Observations

A team of British and German scientists observed the total eclipse in Pattani province in southern Siam. King Rama VII and Queen Rambai Barni also visited the observation camp set up by foreign scientists and observed the eclipse together in Pattani. This was the last time that Siam (Thailand) received a large-scale solar eclipse observation team so far. The other teams Thailand received later, including the American team for the total solar eclipse of June 20, 1955 were much smaller. [1]

Eclipses in 1929

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 127

Inex

Triad

Solar eclipses of 1928–1931

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [2]

The partial solar eclipse on June 17, 1928 occurs in the previous lunar year eclipse set, and the partial solar eclipse on September 12, 1931 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1928 to 1931
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 May 19, 1928
SE1928May19T.png
Total (non-central)
1.0048122 November 12, 1928
SE1928Nov12P.png
Partial
1.0861
127 May 9, 1929
SE1929May09T.png
Total
−0.2887132 November 1, 1929
SE1929Nov01A.png
Annular
0.3514
137 April 28, 1930
SE1930Apr28H.png
Hybrid
0.473142 October 21, 1930
SE1930Oct21T.png
Total
−0.3804
147 April 18, 1931
SE1931Apr18P.png
Partial
1.2643152 October 11, 1931
SE1931Oct11P.png
Partial
−1.0607

Saros 127

This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 82 events. The series started with a partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular or hybrid eclipses in this set. The series ends at member 82 as a partial eclipse on March 21, 2452. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 31 at 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occur at the Moon’s ascending node of orbit. [3]

Series members 46–68 occur between 1801 and 2200:
464748
SE1803Feb21T.png
February 21, 1803
SE1821Mar04T.gif
March 4, 1821
SE1839Mar15T.gif
March 15, 1839
495051
SE1857Mar25T.gif
March 25, 1857
SE1875Apr06T.png
April 6, 1875
SE1893Apr16T.png
April 16, 1893
525354
SE1911Apr28T.png
April 28, 1911
SE1929May09T.png
May 9, 1929
SE1947May20T.png
May 20, 1947
555657
SE1965May30T.png
May 30, 1965
SE1983Jun11T.png
June 11, 1983
SE2001Jun21T.png
June 21, 2001
585960
SE2019Jul02T.png
July 2, 2019
SE2037Jul13T.png
July 13, 2037
SE2055Jul24T.png
July 24, 2055
616263
SE2073Aug03T.png
August 3, 2073
SE2091Aug15T.png
August 15, 2091
Saros127 63van82 SE2109Aug26P.jpg
August 26, 2109
646566
Saros127 64van82 SE2127Sep06P.jpg
September 6, 2127
Saros127 65van82 SE2145Sep16P.jpg
September 16, 2145
Saros127 66van82 SE2163Sep28P.jpg
September 28, 2163
6768
Saros127 67van82 SE2181Oct08P.jpg
October 8, 2181
Saros127 68van82 SE2199Oct19P.jpg
October 19, 2199

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Apr14A.gif
April 14, 1809
(Saros 116)
SE1820Mar14T.gif
March 14, 1820
(Saros 117)
SE1831Feb12A.gif
February 12, 1831
(Saros 118)
SE1842Jan11A.gif
January 11, 1842
(Saros 119)
SE1852Dec11T.gif
December 11, 1852
(Saros 120)
SE1863Nov11A.png
November 11, 1863
(Saros 121)
SE1874Oct10An.gif
October 10, 1874
(Saros 122)
SE1885Sep08T.png
September 8, 1885
(Saros 123)
SE1896Aug09T.png
August 9, 1896
(Saros 124)
SE1907Jul10A.png
July 10, 1907
(Saros 125)
SE1918Jun08T.png
June 8, 1918
(Saros 126)
SE1929May09T.png
May 9, 1929
(Saros 127)
SE1940Apr07A.png
April 7, 1940
(Saros 128)
SE1951Mar07A.png
March 7, 1951
(Saros 129)
SE1962Feb05T.png
February 5, 1962
(Saros 130)
SE1973Jan04A.png
January 4, 1973
(Saros 131)
SE1983Dec04A.png
December 4, 1983
(Saros 132)
SE1994Nov03T.png
November 3, 1994
(Saros 133)
SE2005Oct03A.png
October 3, 2005
(Saros 134)
SE2016Sep01A.png
September 1, 2016
(Saros 135)
SE2027Aug02T.png
August 2, 2027
(Saros 136)
SE2038Jul02A.png
July 2, 2038
(Saros 137)
SE2049May31A.png
May 31, 2049
(Saros 138)
SE2060Apr30T.png
April 30, 2060
(Saros 139)
SE2071Mar31A.png
March 31, 2071
(Saros 140)
SE2082Feb27A.png
February 27, 2082
(Saros 141)
SE2093Jan27T.png
January 27, 2093
(Saros 142)
SE2103Dec29A.png
December 29, 2103
(Saros 143)
SE2114Nov27A.png
November 27, 2114
(Saros 144)
SE2125Oct26T.png
October 26, 2125
(Saros 145)
SE2136Sep26T.png
September 26, 2136
(Saros 146)
Saros147 30van80 SE2147Aug26A.jpg
August 26, 2147
(Saros 147)
SE2158Jul25T.png
July 25, 2158
(Saros 148)
Saros149 29van71 SE2169Jun25T.jpg
June 25, 2169
(Saros 149)
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
(Saros 150)
SE2191Apr23A.png
April 23, 2191
(Saros 151)

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 13, 1898 and July 20, 1982
December 13–14October 1–2July 20–21May 9February 24–25
111113115117119
SE1898Dec13P.gif
December 13, 1898
SE1906Jul21P.png
July 21, 1906
SE1910May09T.png
May 9, 1910
SE1914Feb25A.png
February 25, 1914
121123125127129
SE1917Dec14A.png
December 14, 1917
SE1921Oct01T.png
October 1, 1921
SE1925Jul20A.png
July 20, 1925
SE1929May09T.png
May 9, 1929
SE1933Feb24A.png
February 24, 1933
131133135137139
SE1936Dec13A.png
December 13, 1936
SE1940Oct01T.png
October 1, 1940
SE1944Jul20A.png
July 20, 1944
SE1948May09A.png
May 9, 1948
SE1952Feb25T.png
February 25, 1952
141143145147149
SE1955Dec14A.png
December 14, 1955
SE1959Oct02T.png
October 2, 1959
SE1963Jul20T.png
July 20, 1963
SE1967May09P.png
May 9, 1967
SE1971Feb25P.png
February 25, 1971
151153155
SE1974Dec13P.png
December 13, 1974
SE1978Oct02P.png
October 2, 1978
SE1982Jul20P.png
July 20, 1982

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 1, 2016</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 1, 2016, with a magnitude of 0.9736. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. In this case, annularity was observed in Gabon, Congo, Democratic Republic of the Congo, Tanzania, Mozambique, Madagascar, and Réunion.

<span class="mw-page-title-main">Solar eclipse of April 20, 2042</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Sunday, April 20, 2042, with a magnitude of 1.0614. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It will be seen significantly in Western Indonesia, Eastern Malaysia, Brunei and the Philippines.

<span class="mw-page-title-main">Solar eclipse of April 30, 2060</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 22, 2096</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This will be the first eclipse of saros series 139 to exceed series 136 in length of totality. The length of totality for saros 139 is increasing, while that of Saros 136 is decreasing.

<span class="mw-page-title-main">Solar eclipse of March 18, 1988</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, March 18, 1988, with a magnitude of 1.0464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia and southern Philippines.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Tokelau, Cook Islands, French Polynesia, Chile and Argentina. This solar eclipse occurred over 3 months after the final game of 1958 FIFA World Cup.

<span class="mw-page-title-main">Solar eclipse of October 1, 1940</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 1, 1940, with a magnitude of 1.0645. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Colombia, Brazil, Venezuela and South Africa.

<span class="mw-page-title-main">Solar eclipse of September 21, 1922</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 21, 1922, with a magnitude of 1.0678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The greatest eclipse occurred exactly at perigee.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1980</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 10, 1980, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Tabuaeran of Kiribati, Peru, Bolivia, northern Paraguay and Brazil. Occurring 5 days before apogee, the Moon's apparent diameter was smaller. At greatest eclipse, the Sun was 79 degrees above horizon.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 23, 2071</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of July 20, 1944</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from British Uganda, Anglo-Egyptian Sudan, British Kenya, Ethiopia, British Somaliland, British Raj, Burma, Thailand, French Indochina, Philippines, South Seas Mandate in Japan the Territory of New Guinea.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

<span class="mw-page-title-main">Solar eclipse of July 9, 1926</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, July 9, 1926, with a magnitude of 0.968. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the islands of Pulo Anna and Merir in Japan's South Seas Mandate and Wake Island on July 10 (Saturday), and Midway Atoll on July 9 (Friday).

References

  1. "SOLAR ECLIPSES IN SIAM (THAILAND)". National Astronomical Research Institute of Thailand. Archived from the original on 30 March 2016.
  2. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. "NASA - Catalog of Solar Eclipses of Saros 127". eclipse.gsfc.nasa.gov.