Solar eclipse of April 16, 1893

Last updated
Solar eclipse of April 16, 1893
Total eclipse
SE1893Apr16T.png
Map
Gamma −0.1764
Magnitude 1.0556
Maximum eclipse
Duration287 s (4 min 47 s)
Coordinates 1°18′N34°36′W / 1.3°N 34.6°W / 1.3; -34.6
Max. width of band186 km (116 mi)
Times (UTC)
Greatest eclipse14:36:11
References
Saros 127 (51 of 82)
Catalog # (SE5000) 9264
← October 20, 1892
October 9, 1893 →
Corona as viewed from Mina Los Bronces, Region de Atacama, Chile PSM V60 D257 Solar corona of 1893 eclipse.png
Corona as viewed from Mina Los Bronces, Región de Atacama, Chile

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, April 16, 1893, with a magnitude of 1.0556. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee (on April 17, 1893, at 21:50 UTC), the Moon's apparent diameter was larger. [1]

Contents

The path of totality was visible from parts of the modern-day countries of Chile, Argentina, Paraguay, Brazil, Senegal, Mauritania, Mali, southern Algeria, Niger, Chad, and Sudan. A partial solar eclipse was also visible for parts of South America, Africa, and Southern Europe.

Observations

According to Edward S. Holden, John Martin Schaeberle discovered a comet like object on the plates of the eclipse from Chile. The comet was 0.8 Moon diameters from the Moon. [2]

Schaeberle observed the eclipse and made drawings of the Corona:

Solar eclipse 1893Apr16-Corona predicted by Schaeberle.png
Predicted by Schaeberle
Solar eclipse 1893Apr16-Corona-Schaeberle.png
Observed by Schaeberle
Solar eclipse 1893Apr16-Corona Schaeberle.png
Observed by Schaeberle

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

April 16, 1893 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1893 April 16 at 11:57:24.1 UTC
First Umbral External Contact1893 April 16 at 12:52:48.9 UTC
First Central Line1893 April 16 at 12:53:50.7 UTC
First Umbral Internal Contact1893 April 16 at 12:54:52.6 UTC
First Penumbral Internal Contact1893 April 16 at 13:51:45.5 UTC
Equatorial Conjunction1893 April 16 at 14:26:54.0 UTC
Ecliptic Conjunction1893 April 16 at 14:34:21.8 UTC
Greatest Eclipse1893 April 16 at 14:36:11.0 UTC
Greatest Duration1893 April 16 at 14:42:16.8 UTC
Last Penumbral Internal Contact1893 April 16 at 15:20:49.8 UTC
Last Umbral Internal Contact1893 April 16 at 16:17:33.4 UTC
Last Central Line1893 April 16 at 16:18:36.8 UTC
Last Umbral External Contact1893 April 16 at 16:19:40.1 UTC
Last Penumbral External Contact1893 April 16 at 17:14:58.4 UTC
April 16, 1893 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.05562
Eclipse Obscuration1.11434
Gamma−0.17634
Sun Right Ascension01h39m29.7s
Sun Declination+10°20'33.9"
Sun Semi-Diameter15'55.5"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension01h39m49.3s
Moon Declination+10°11'02.4"
Moon Semi-Diameter16'32.0"
Moon Equatorial Horizontal Parallax1°00'40.6"
ΔT-6.4 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of April 1893
April 16
Ascending node (new moon)
April 30
Descending node (full moon)
SE1893Apr16T.png
Total solar eclipse
Solar Saros 127
Penumbral lunar eclipse
Lunar Saros 139

Eclipses in 1893

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 127

Inex

Triad

Solar eclipses of 1892–1895

This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on August 20, 1895 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1892 to 1895
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 April 26, 1892
SE1892Apr26T.png
Total
−0.8870122October 20, 1892
SE1892Oct20P.gif
Partial
1.0286
127 April 16, 1893
SE1893Apr16T.png
Total
−0.1764132October 9, 1893
SE1893Oct09A.png
Annular
0.2866
137April 6, 1894
SE1894Apr06H.png
Hybrid
0.5740142September 29, 1894
SE1894Sep29T.png
Total
−0.4573
147March 26, 1895
SE1895Mar26P.gif
Partial
1.3565152September 18, 1895
SE1895Sep18P.gif
Partial
−1.1469

Saros 127

This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 82 events. The series started with a partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular or hybrid eclipses in this set. The series ends at member 82 as a partial eclipse on March 21, 2452. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 31 at 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 46–68 occur between 1801 and 2200:
464748
SE1803Feb21T.png
February 21, 1803
SE1821Mar04T.gif
March 4, 1821
SE1839Mar15T.gif
March 15, 1839
495051
SE1857Mar25T.gif
March 25, 1857
SE1875Apr06T.png
April 6, 1875
SE1893Apr16T.png
April 16, 1893
525354
SE1911Apr28T.png
April 28, 1911
SE1929May09T.png
May 9, 1929
SE1947May20T.png
May 20, 1947
555657
SE1965May30T.png
May 30, 1965
SE1983Jun11T.png
June 11, 1983
SE2001Jun21T.png
June 21, 2001
585960
SE2019Jul02T.png
July 2, 2019
SE2037Jul13T.png
July 13, 2037
SE2055Jul24T.png
July 24, 2055
616263
SE2073Aug03T.png
August 3, 2073
SE2091Aug15T.png
August 15, 2091
Saros127 63van82 SE2109Aug26P.jpg
August 26, 2109
646566
Saros127 64van82 SE2127Sep06P.jpg
September 6, 2127
Saros127 65van82 SE2145Sep16P.jpg
September 16, 2145
Saros127 66van82 SE2163Sep28P.jpg
September 28, 2163
6768
Saros127 67van82 SE2181Oct08P.jpg
October 8, 2181
Saros127 68van82 SE2199Oct19P.jpg
October 19, 2199

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between February 3, 1859 and June 29, 1946
February 1–3November 21–22September 8–10June 28–29April 16–18
109111113115117
SE1859Feb03P.png
February 3, 1859
SE1862Nov21P.gif
November 21, 1862
SE1870Jun28P.gif
June 28, 1870
SE1874Apr16T.gif
April 16, 1874
119121123125127
SE1878Feb02A.gif
February 2, 1878
SE1881Nov21A.gif
November 21, 1881
SE1885Sep08T.png
September 8, 1885
SE1889Jun28A.png
June 28, 1889
SE1893Apr16T.png
April 16, 1893
129131133135137
SE1897Feb01A.gif
February 1, 1897
SE1900Nov22A.gif
November 22, 1900
SE1904Sep09T.png
September 9, 1904
SE1908Jun28A.png
June 28, 1908
SE1912Apr17H.png
April 17, 1912
139141143145147
SE1916Feb03T.png
February 3, 1916
SE1919Nov22A.png
November 22, 1919
SE1923Sep10T.png
September 10, 1923
SE1927Jun29T.png
June 29, 1927
SE1931Apr18P.png
April 18, 1931
149151153155
SE1935Feb03P.png
February 3, 1935
SE1938Nov21P.png
November 21, 1938
SE1942Sep10P.png
September 10, 1942
SE1946Jun29P.png
June 29, 1946

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Dec21A.gif
December 21, 1805
(Saros 119)
SE1816Nov19T.gif
November 19, 1816
(Saros 120)
SE1827Oct20H.gif
October 20, 1827
(Saros 121)
SE1838Sep18A.gif
September 18, 1838
(Saros 122)
SE1849Aug18T.gif
August 18, 1849
(Saros 123)
SE1860Jul18T.gif
July 18, 1860
(Saros 124)
SE1871Jun18A.gif
June 18, 1871
(Saros 125)
SE1882May17T.png
May 17, 1882
(Saros 126)
SE1893Apr16T.png
April 16, 1893
(Saros 127)
SE1904Mar17A.png
March 17, 1904
(Saros 128)
SE1915Feb14A.png
February 14, 1915
(Saros 129)
SE1926Jan14T.png
January 14, 1926
(Saros 130)
SE1936Dec13A.png
December 13, 1936
(Saros 131)
SE1947Nov12A.png
November 12, 1947
(Saros 132)
SE1958Oct12T.png
October 12, 1958
(Saros 133)
SE1969Sep11A.png
September 11, 1969
(Saros 134)
SE1980Aug10A.png
August 10, 1980
(Saros 135)
SE1991Jul11T.png
July 11, 1991
(Saros 136)
SE2002Jun10A.png
June 10, 2002
(Saros 137)
SE2013May10A.png
May 10, 2013
(Saros 138)
SE2024Apr08T.png
April 8, 2024
(Saros 139)
SE2035Mar09A.png
March 9, 2035
(Saros 140)
SE2046Feb05A.png
February 5, 2046
(Saros 141)
SE2057Jan05T.png
January 5, 2057
(Saros 142)
SE2067Dec06H.png
December 6, 2067
(Saros 143)
SE2078Nov04A.png
November 4, 2078
(Saros 144)
SE2089Oct04T.png
October 4, 2089
(Saros 145)
SE2100Sep04T.png
September 4, 2100
(Saros 146)
SE2111Aug04A.png
August 4, 2111
(Saros 147)
Saros148 27van75 SE2122Jul04T.jpg
July 4, 2122
(Saros 148)
SE2133Jun03T.png
June 3, 2133
(Saros 149)
Saros150 24van71 SE2144May03A.jpg
May 3, 2144
(Saros 150)
SE2155Apr02A.png
April 2, 2155
(Saros 151)
Saros152 21van70 SE2166Mar02T.jpg
March 2, 2166
(Saros 152)
Saros153 18van70 SE2177Jan29A.jpg
January 29, 2177
(Saros 153)
Saros154 16van71 SE2187Dec29A.jpg
December 29, 2187
(Saros 154)
SE2198Nov28T.png
November 28, 2198
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1806Jun16T.png
June 16, 1806
(Saros 124)
SE1835May27A.gif
May 27, 1835
(Saros 125)
SE1864May06H.gif
May 6, 1864
(Saros 126)
SE1893Apr16T.png
April 16, 1893
(Saros 127)
SE1922Mar28A.png
March 28, 1922
(Saros 128)
SE1951Mar07A.png
March 7, 1951
(Saros 129)
SE1980Feb16T.png
February 16, 1980
(Saros 130)
SE2009Jan26A.png
January 26, 2009
(Saros 131)
SE2038Jan05A.png
January 5, 2038
(Saros 132)
SE2066Dec17T.png
December 17, 2066
(Saros 133)
SE2095Nov27A.png
November 27, 2095
(Saros 134)
SE2124Nov06A.png
November 6, 2124
(Saros 135)
SE2153Oct17T.png
October 17, 2153
(Saros 136)
SE2182Sep27A.png
September 27, 2182
(Saros 137)

Notes

  1. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 27 August 2024.
  2. SENL200304 (PDF) at NASA.gov
  3. "Total Solar Eclipse of 1893 Apr 16". EclipseWise.com. Retrieved 27 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 127". eclipse.gsfc.nasa.gov.

References