Solar eclipse of April 29, 2014

Last updated
Solar eclipse of April 29, 2014
Partial Solar Eclipse April 29th 2014 (13898733668).jpg
Partial from Adelaide, Australia
SE2014Apr29A.png
Map
Type of eclipse
NatureAnnular
Gamma −1.00001
Magnitude 0.9868
Maximum eclipse
Duration-
Coordinates 70°36′S131°18′E / 70.6°S 131.3°E / -70.6; 131.3
Max. width of band- km
Times (UTC)
(P1) Partial begin3:52:38
(U1) Total begin5:47:50
Greatest eclipse6:04:33
(U4) Total end6:09:20
(P4) Partial end8:14:28
References
Saros 148 (21 of 75)
Catalog # (SE5000) 9539

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, April 29, 2014, [1] [2] with a magnitude of 0.9868. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 6.2 days after perigee (on April 23, 2014, at 1:20 UTC) and 7.2 days before apogee (on May 6, 2014, at 11:20 UTC). [3]

Contents

This eclipse's gamma value was closer to 1 than any other eclipse from 2000 B.C. to 3000 A.D. This means the center of the Moon's shadow passed almost exactly at the surface of the Earth, barely missing the Antarctic continent by a few kilometers, but an annular eclipse was visible from a small part of Antarctica, and a partial eclipse was visible from parts of Antarctica and Australia.

Visibility

SolarEclipse2014Apr29A.GIF
Animation of eclipse path

Images

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [4]

April 29, 2014 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2014 April 29 at 03:53:46.0 UTC
Equatorial Conjunction2014 April 29 at 05:38:58.2 UTC
First Umbral External Contact2014 April 29 at 05:58:45.6 UTC
Greatest Eclipse2014 April 29 at 06:04:32.9 UTC
Last Umbral Internal Contact2014 April 29 at 06:10:41.3 UTC
Ecliptic Conjunction2014 April 29 at 06:15:28.3 UTC
Last Penumbral External Contact2014 April 29 at 08:15:37.1 UTC
April 29, 2014 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.98679
Eclipse Obscuration-
Gamma-0.99996
Sun Right Ascension02h25m52.9s
Sun Declination+14°26'54.2"
Sun Semi-Diameter15'52.9"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension02h26m46.0s
Moon Declination+13°31'06.8"
Moon Semi-Diameter15'38.4"
Moon Equatorial Horizontal Parallax0°57'24.1"
ΔT67.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of April 2014
April 15
Ascending node (full moon)
April 29
Descending node (new moon)
Lunar eclipse chart close-2014Apr15.png SE2014Apr29A.png
Total lunar eclipse
Lunar Saros 122
Annular solar eclipse
Solar Saros 148

Eclipses in 2014

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 148

Inex

Triad

Solar eclipses of 2011–2014

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]

The partial solar eclipses on January 4, 2011 and July 1, 2011 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2011 to 2014
Descending node Ascending node
SarosMapGammaSarosMapGamma
118
Partial solar eclipse Tromso 2011-05-31 (cropped).jpg
Partial in Tromsø, Norway
June 1, 2011
SE2011Jun01P.png
Partial
1.21300123
Partial Solar Eclipse of 2011 11 25 -Hinode XRT- freeze frame.png
Hinode XRT footage
November 25, 2011
SE2011Nov25P.png
Partial
−1.05359
128
Solar Eclipse May 20,2012.jpg
Annularity in Red Bluff, CA, USA
May 20, 2012
SE2012May20A.png
Annular
0.48279133
Solar eclipse of 2012 november 14 near Mt Carbine.jpg
Totality in Mount Carbine, Queensland, Australia
November 13, 2012
SE2012Nov13T.png
Total
−0.37189
138
Annular Solar Eclipse May 10 2013 Northern Territory Australia.JPG
Annularity in Churchills Head, Australia
May 10, 2013
SE2013May10A.png
Annular
−0.26937143
2013 Solar Eclipse Libreville.JPG
Partial in Libreville, Gabon
November 3, 2013
SE2013Nov03H.png
Hybrid
0.32715
148
Partial Solar Eclipse April 29th 2014 (13898733668).jpg
Partial in Adelaide, Australia
April 29, 2014
SE2014Apr29A.png
Annular (non-central)
−0.99996153
Partial solar eclipse Oct 23 2014 Minneapolis 5-36pm Ruen1.png
Partial in Minneapolis, MN, USA
October 23, 2014
SE2014Oct23P.png
Partial
1.09078

Saros 148

This eclipse is a part of Saros series 148, repeating every 18 years, 11 days, and containing 75 events. The series started with a partial solar eclipse on September 21, 1653. It contains annular eclipses on April 29, 2014 and May 9, 2032; a hybrid eclipse on May 20, 2050; and total eclipses from May 31, 2068 through August 3, 2771. The series ends at member 75 as a partial eclipse on December 12, 2987. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 22 at 22 seconds (by default) on May 9, 2032, and the longest duration of totality will be produced by member 54 at 5 minutes, 23 seconds on April 26, 2609. All eclipses in this series occur at the Moon’s descending node of orbit. [6]

Series members 10–31 occur between 1801 and 2200:
101112
SE1815Dec30P.gif
December 30, 1815
SE1834Jan09P.gif
January 9, 1834
SE1852Jan21P.gif
January 21, 1852
131415
SE1870Jan31P.gif
January 31, 1870
SE1888Feb11P.gif
February 11, 1888
SE1906Feb23P.png
February 23, 1906
161718
SE1924Mar05P.png
March 5, 1924
SE1942Mar16P.png
March 16, 1942
SE1960Mar27P.png
March 27, 1960
192021
SE1978Apr07P.png
April 7, 1978
SE1996Apr17P.png
April 17, 1996
SE2014Apr29A.png
April 29, 2014
222324
SE2032May09A.png
May 9, 2032
SE2050May20H.png
May 20, 2050
SE2068May31T.png
May 31, 2068
252627
SE2086Jun11T.png
June 11, 2086
Saros148 26van75 SE2104Jun22T.jpg
June 22, 2104
Saros148 27van75 SE2122Jul04T.jpg
July 4, 2122
282930
Saros148 28van75 SE2140Jul14T.jpg
July 14, 2140
SE2158Jul25T.png
July 25, 2158
Saros148 30van75 SE2176Aug04T.jpg
August 4, 2176
31
Saros148 31van75 SE2194Aug16T.jpg
August 16, 2194

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 11, 1953 and July 11, 2029
July 10–11April 29–30February 15–16December 4September 21–23
116118120122124
SE1953Jul11P.png
July 11, 1953
SE1957Apr30A.png
April 30, 1957
SE1961Feb15T.png
February 15, 1961
SE1964Dec04P.png
December 4, 1964
SE1968Sep22T.png
September 22, 1968
126128130132134
SE1972Jul10T.png
July 10, 1972
SE1976Apr29A.png
April 29, 1976
SE1980Feb16T.png
February 16, 1980
SE1983Dec04A.png
December 4, 1983
SE1987Sep23A.png
September 23, 1987
136138140142144
SE1991Jul11T.png
July 11, 1991
SE1995Apr29A.png
April 29, 1995
SE1999Feb16A.png
February 16, 1999
SE2002Dec04T.png
December 4, 2002
SE2006Sep22A.png
September 22, 2006
146148150152154
SE2010Jul11T.png
July 11, 2010
SE2014Apr29A.png
April 29, 2014
SE2018Feb15P.png
February 15, 2018
SE2021Dec04T.png
December 4, 2021
SE2025Sep21P.png
September 21, 2025
156
SE2029Jul11P.png
July 11, 2029

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2134
SE1806Dec10A.gif
December 10, 1806
(Saros 129)
SE1817Nov09T.gif
November 9, 1817
(Saros 130)
SE1828Oct09A.gif
October 9, 1828
(Saros 131)
SE1839Sep07A.png
September 7, 1839
(Saros 132)
SE1850Aug07T.gif
August 7, 1850
(Saros 133)
SE1861Jul08A.gif
July 8, 1861
(Saros 134)
SE1872Jun06A.gif
June 6, 1872
(Saros 135)
SE1883May06T.png
May 6, 1883
(Saros 136)
SE1894Apr06H.gif
April 6, 1894
(Saros 137)
SE1905Mar06A.png
March 6, 1905
(Saros 138)
SE1916Feb03T.png
February 3, 1916
(Saros 139)
SE1927Jan03A.png
January 3, 1927
(Saros 140)
SE1937Dec02A.png
December 2, 1937
(Saros 141)
SE1948Nov01T.png
November 1, 1948
(Saros 142)
SE1959Oct02T.png
October 2, 1959
(Saros 143)
SE1970Aug31A.png
August 31, 1970
(Saros 144)
SE1981Jul31T.png
July 31, 1981
(Saros 145)
SE1992Jun30T.png
June 30, 1992
(Saros 146)
SE2003May31A.png
May 31, 2003
(Saros 147)
SE2014Apr29A.png
April 29, 2014
(Saros 148)
SE2025Mar29P.png
March 29, 2025
(Saros 149)
SE2036Feb27P.png
February 27, 2036
(Saros 150)
SE2047Jan26P.png
January 26, 2047
(Saros 151)
SE2057Dec26T.png
December 26, 2057
(Saros 152)
SE2068Nov24P.png
November 24, 2068
(Saros 153)
SE2079Oct24A.png
October 24, 2079
(Saros 154)
SE2090Sep23T.png
September 23, 2090
(Saros 155)
Saros156 06van69 SE2101Aug24P.jpg
August 24, 2101
(Saros 156)
Saros157 04van70 SE2112Jul23P.jpg
July 23, 2112
(Saros 157)
Saros158 04van70 SE2123Jun23P.jpg
June 23, 2123
(Saros 158)
Saros159 01van70 SE2134May23P.jpg
May 23, 2134
(Saros 159)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1811Sep17A.gif
September 17, 1811
(Saros 141)
SE1840Aug27T.gif
August 27, 1840
(Saros 142)
SE1869Aug07T.png
August 7, 1869
(Saros 143)
SE1898Jul18A.png
July 18, 1898
(Saros 144)
SE1927Jun29T.png
June 29, 1927
(Saros 145)
SE1956Jun08T.png
June 8, 1956
(Saros 146)
SE1985May19P.png
May 19, 1985
(Saros 147)
SE2014Apr29A.png
April 29, 2014
(Saros 148)
SE2043Apr09T.png
April 9, 2043
(Saros 149)
SE2072Mar19P.png
March 19, 2072
(Saros 150)
SE2101Feb28A.png
February 28, 2101
(Saros 151)
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
(Saros 152)
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
(Saros 153)
Saros154 16van71 SE2187Dec29A.jpg
December 29, 2187
(Saros 154)

Notes

    Related Research Articles

    <span class="mw-page-title-main">Solar eclipse of October 23, 2014</span> 21st-century partial solar eclipse

    A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 23, 2014, with a magnitude of 0.8114. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

    <span class="mw-page-title-main">Solar eclipse of April 17, 1996</span> 20th-century partial solar eclipse

    A partial solar eclipse occurred at the Moon's descending node of orbit between Wednesday, April 17 and Thursday, April 18, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

    <span class="mw-page-title-main">Solar eclipse of February 17, 2026</span> Future annular solar eclipse

    An annular solar eclipse will occur at the Moon’s ascending node of orbit on Tuesday, February 17, 2026, with a magnitude of 0.963. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.8 days after apogee and 7.5 days before perigee.

    <span class="mw-page-title-main">Solar eclipse of May 9, 2032</span> Future annular solar eclipse

    An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, May 9, 2032, with a magnitude of 0.9957. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 5.7 days after perigee and 7.4 days before apogee.

    <span class="mw-page-title-main">Solar eclipse of November 3, 2032</span> Future solar eclipse

    A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, November 3, 2032, with a magnitude of 0.8554. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

    <span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

    A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

    <span class="mw-page-title-main">Solar eclipse of June 21, 2039</span> Future annular solar eclipse

    An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, June 21, 2039, with a magnitude of 0.9454. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2 days after apogee, the Moon's apparent diameter will be smaller.

    <span class="mw-page-title-main">Solar eclipse of December 15, 2039</span> Total eclipse

    A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, December 15, 2039, with a magnitude of 1.0356. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4.5 hours before perigee, the Moon's apparent diameter will be larger.

    <span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

    A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

    <span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

    A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

    <span class="mw-page-title-main">Solar eclipse of April 30, 2041</span> Total eclipse

    A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 30, 2041, with a magnitude of 1.0189. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.75 days after perigee, the Moon's apparent diameter will be larger.

    <span class="mw-page-title-main">Solar eclipse of October 25, 2041</span> Future annular solar eclipse

    An annular solar eclipse will occur at the Moon's descending node of orbit between Thursday, October 24 and Friday, October 25, 2041, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days after apogee, the Moon's apparent diameter will be smaller.

    <span class="mw-page-title-main">Solar eclipse of October 3, 2043</span> Future annular solar eclipse

    An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, October 3, 2043, with a magnitude of 0.9497. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.8 days before apogee, the Moon's apparent diameter will be smaller.

    <span class="mw-page-title-main">Solar eclipse of May 20, 2050</span> Total eclipse

    A total solar eclipse will occur at the Moon's descending node of orbit on Friday, May 20, 2050, with a magnitude of 1.0038. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 5.2 days after perigee, the Moon's apparent diameter will be larger.

    <span class="mw-page-title-main">Solar eclipse of April 20, 2061</span> Total eclipse

    A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, April 20, 2061, with a magnitude of 1.0475. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter will be larger.

    <span class="mw-page-title-main">Solar eclipse of October 13, 2061</span> Future annular solar eclipse

    An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.1 days before apogee, the Moon's apparent diameter will be smaller.

    <span class="mw-page-title-main">Solar eclipse of May 31, 2068</span> Total eclipse

    A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4.7 days after perigee, the Moon's apparent diameter will be larger.

    <span class="mw-page-title-main">Solar eclipse of June 11, 2086</span> Total eclipse

    A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 11, 2086, with a magnitude of 1.0174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4.4 days after perigee, the Moon's apparent diameter will be larger.

    <span class="mw-page-title-main">Solar eclipse of March 16, 1942</span> 20th-century partial solar eclipse

    A partial solar eclipse occurred at the Moon's descending node of orbit between Monday, March 16 and Tuesday, March 17, 1942, with a magnitude of 0.6393. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

    <span class="mw-page-title-main">Solar eclipse of March 5, 1924</span> 20th-century partial solar eclipse

    A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, March 5, 1924, with a magnitude of 0.5819. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

    References

    1. "April 29, 2014 Annular Solar Eclipse". timeanddate. Retrieved 12 August 2024.
    2. "Antarctic prime spot for Tuesday's solar eclipse". The Brownsville Herald. 2014-04-30. p. 21. Retrieved 2023-10-26 via Newspapers.com.
    3. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 12 August 2024.
    4. "Annular Solar Eclipse of 2014 Apr 29". EclipseWise.com. Retrieved 12 August 2024.
    5. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
    6. "NASA - Catalog of Solar Eclipses of Saros 148". eclipse.gsfc.nasa.gov.