Solar eclipse of December 15, 2039

Last updated
Solar eclipse of December 15, 2039
SE2039Dec15T.png
Map
Type of eclipse
NatureTotal
Gamma −0.9458
Magnitude 1.0356
Maximum eclipse
Duration111 s (1 min 51 s)
Coordinates 80°54′S172°48′E / 80.9°S 172.8°E / -80.9; 172.8
Max. width of band380 km (240 mi)
Times (UTC)
Greatest eclipse16:23:46
References
Saros 152 (14 of 70)
Catalog # (SE5000) 9596

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, December 15, 2039, [1] with a magnitude of 1.0356. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4.5 hours before perigee (on December 15, 2039, at 20:55 UTC), the Moon's apparent diameter will be larger. [2]

Contents

The totality of the eclipse begins in the southern Pacific Ocean, passing over much of Antarctica and closely reaching the South Pole. A partial eclipse will be visible in the southern extremities of South America and Africa. It will terminate in the southern Indian Ocean several hours later. [3]

Images

SE2039Dec15T.gif
Animated path

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [4]

December 15, 2039 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2039 December 15 at 14:18:57.1 UTC
First Umbral External Contact2039 December 15 at 15:48:33.4 UTC
First Central Line2039 December 15 at 15:51:02.4 UTC
First Umbral Internal Contact2039 December 15 at 15:53:42.4 UTC
Greatest Eclipse2039 December 15 at 16:23:45.9 UTC
Greatest Duration2039 December 15 at 16:23:51.5 UTC
Ecliptic Conjunction2039 December 15 at 16:33:15.1 UTC
Equatorial Conjunction2039 December 15 at 16:38:03.7 UTC
Last Umbral Internal Contact2039 December 15 at 16:53:39.5 UTC
Last Central Line2039 December 15 at 16:56:19.9 UTC
Last Umbral External Contact2039 December 15 at 16:58:49.2 UTC
Last Penumbral External Contact2039 December 15 at 18:28:28.1 UTC
December 15, 2039 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.03558
Eclipse Obscuration1.07243
Gamma−0.94577
Sun Right Ascension17h31m51.4s
Sun Declination-23°16'37.6"
Sun Semi-Diameter16'14.9"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension17h31m14.4s
Moon Declination-24°13'58.8"
Moon Semi-Diameter16'44.6"
Moon Equatorial Horizontal Parallax1°01'26.8"
ΔT78.5 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of November–December 2039
November 30
Ascending node (full moon)
December 15
Descending node (new moon)
Lunar eclipse chart close-2039Nov30.png SE2039Dec15T.png
Partial lunar eclipse
Lunar Saros 126
Total solar eclipse
Solar Saros 152

Eclipses in 2039

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 152

Inex

Triad

Solar eclipses of 2036–2039

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]

The partial solar eclipses on February 27, 2036 and August 21, 2036 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2036 to 2039
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 July 23, 2036
SE2036Jul23P.png
Partial
−1.425122 January 16, 2037
SE2037Jan16P.png
Partial
1.1477
127 July 13, 2037
SE2037Jul13T.png
Total
−0.7246132 January 5, 2038
SE2038Jan05A.png
Annular
0.4169
137 July 2, 2038
SE2038Jul02A.png
Annular
0.0398142 December 26, 2038
SE2038Dec26T.png
Total
−0.2881
147 June 21, 2039
SE2039Jun21A.png
Annular
0.8312152 December 15, 2039
SE2039Dec15T.png
Total
−0.9458

Saros 152

This eclipse is a part of Saros series 152, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 26, 1805. It contains total eclipses from November 2, 1967 through September 14, 2490; hybrid eclipses from September 26, 2508 through October 17, 2544; and annular eclipses from October 29, 2562 through June 16, 2941. The series ends at member 70 as a partial eclipse on August 20, 3049. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 30 at 5 minutes, 16 seconds on June 9, 2328, and the longest duration of annularity will be produced by member 53 at 5 minutes, 20 seconds on February 16, 2743. All eclipses in this series occur at the Moon’s descending node of orbit. [6]

Series members 1–22 occur between 1805 and 2200:
123
SE1805Jul26Pb.gif
July 26, 1805
SE1823Aug06P.gif
August 6, 1823
SE1841Aug16P.gif
August 16, 1841
456
SE1859Aug28P.gif
August 28, 1859
SE1877Sep07P.gif
September 7, 1877
SE1895Sep18P.gif
September 18, 1895
789
SE1913Sep30P.png
September 30, 1913
SE1931Oct11P.png
October 11, 1931
SE1949Oct21P.png
October 21, 1949
101112
SE1967Nov02T.png
November 2, 1967
SE1985Nov12T.png
November 12, 1985
SE2003Nov23T.png
November 23, 2003
131415
SE2021Dec04T.png
December 4, 2021
SE2039Dec15T.png
December 15, 2039
SE2057Dec26T.png
December 26, 2057
161718
SE2076Jan06T.png
January 6, 2076
SE2094Jan16T.png
January 16, 2094
Saros152 18van70 SE2112Jan29T.jpg
January 29, 2112
192021
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
Saros152 20van70 SE2148Feb19T.jpg
February 19, 2148
Saros152 21van70 SE2166Mar02T.jpg
March 2, 2166
22
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 22, 1971 and July 22, 2047
July 22May 9–11February 26–27December 14–15October 2–3
116118120122124
SE1971Jul22P.png
July 22, 1971
SE1975May11P.png
May 11, 1975
SE1979Feb26T.png
February 26, 1979
SE1982Dec15P.png
December 15, 1982
SE1986Oct03H.png
October 3, 1986
126128130132134
SE1990Jul22T.png
July 22, 1990
SE1994May10A.png
May 10, 1994
SE1998Feb26T.png
February 26, 1998
SE2001Dec14A.png
December 14, 2001
SE2005Oct03A.png
October 3, 2005
136138140142144
SE2009Jul22T.png
July 22, 2009
SE2013May10A.png
May 10, 2013
SE2017Feb26A.png
February 26, 2017
SE2020Dec14T.png
December 14, 2020
SE2024Oct02A.png
October 2, 2024
146148150152154
SE2028Jul22T.png
July 22, 2028
SE2032May09A.png
May 9, 2032
SE2036Feb27P.png
February 27, 2036
SE2039Dec15T.png
December 15, 2039
SE2043Oct03A.png
October 3, 2043
156
SE2047Jul22P.png
July 22, 2047

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2105
SE1810Sep28A.gif
September 28, 1810
(Saros 131)
SE1821Aug27A.gif
August 27, 1821
(Saros 132)
SE1832Jul27T.gif
July 27, 1832
(Saros 133)
SE1843Jun27H.gif
June 27, 1843
(Saros 134)
SE1854May26A.png
May 26, 1854
(Saros 135)
SE1865Apr25T.png
April 25, 1865
(Saros 136)
SE1876Mar25A.gif
March 25, 1876
(Saros 137)
SE1887Feb22A.png
February 22, 1887
(Saros 138)
SE1898Jan22T.png
January 22, 1898
(Saros 139)
SE1908Dec23H.png
December 23, 1908
(Saros 140)
SE1919Nov22A.png
November 22, 1919
(Saros 141)
SE1930Oct21T.png
October 21, 1930
(Saros 142)
SE1941Sep21T.png
September 21, 1941
(Saros 143)
SE1952Aug20A.png
August 20, 1952
(Saros 144)
SE1963Jul20T.png
July 20, 1963
(Saros 145)
SE1974Jun20T.png
June 20, 1974
(Saros 146)
SE1985May19P.png
May 19, 1985
(Saros 147)
SE1996Apr17P.png
April 17, 1996
(Saros 148)
SE2007Mar19P.png
March 19, 2007
(Saros 149)
SE2018Feb15P.png
February 15, 2018
(Saros 150)
SE2029Jan14P.png
January 14, 2029
(Saros 151)
SE2039Dec15T.png
December 15, 2039
(Saros 152)
SE2050Nov14P.png
November 14, 2050
(Saros 153)
SE2061Oct13A.png
October 13, 2061
(Saros 154)
SE2072Sep12T.png
September 12, 2072
(Saros 155)
SE2083Aug13P.png
August 13, 2083
(Saros 156)
SE2094Jul12P.png
July 12, 2094
(Saros 157)
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1808May25P.gif
May 25, 1808
(Saros 144)
SE1837May04P.gif
May 4, 1837
(Saros 145)
SE1866Apr15P.gif
April 15, 1866
(Saros 146)
SE1895Mar26P.gif
March 26, 1895
(Saros 147)
SE1924Mar05P.png
March 5, 1924
(Saros 148)
SE1953Feb14P.png
February 14, 1953
(Saros 149)
SE1982Jan25P.png
January 24, 1982
(Saros 150)
SE2011Jan04P.png
January 4, 2011
(Saros 151)
SE2039Dec15T.png
December 15, 2039
(Saros 152)
SE2068Nov24P.png
November 24, 2068
(Saros 153)
SE2097Nov04A.png
November 4, 2097
(Saros 154)
Saros155 12van71 SE2126Oct16T.jpg
October 16, 2126
(Saros 155)
Saros156 09van69 SE2155Sep26A.jpg
September 26, 2155
(Saros 156)
Saros157 08van70 SE2184Sep04A.jpg
September 4, 2184
(Saros 157)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of June 11, 2048</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, June 11, 2048, with a magnitude of 0.9441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 15.5 hours after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 5, 2048</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, December 5, 2048, with a magnitude of 1.044. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 16.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 14, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, January 14, 2029, with a magnitude of 0.8714. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 2032</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, May 9, 2032, with a magnitude of 0.9957. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 5.7 days after perigee and 7.4 days before apogee.

<span class="mw-page-title-main">Solar eclipse of September 2, 2035</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Saturday, September 1 and Sunday, September 2, 2035, with a magnitude of 1.032. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 21, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, August 21, 2036, with a magnitude of 0.8622. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 23, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 23, 2036, with a magnitude of 0.1991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of June 21, 2039</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, June 21, 2039, with a magnitude of 0.9454. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of April 9, 2043</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Thursday, April 9 and Friday, April 10, 2043, with a magnitude of 1.0095. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 22 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 3, 2043</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, October 3, 2043, with a magnitude of 0.9497. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.8 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of August 2, 2046</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, August 2, 2046, with a magnitude of 1.0531. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 26, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit between Friday, January 25 and Saturday, January 26, 2047, with a magnitude of 0.8907. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 20, 2050</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, May 20, 2050, with a magnitude of 1.0038. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 5.2 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 3, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, August 3, 2054, with a magnitude of 0.0655. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This event will be the 71st and final event of Solar Saros 117.

<span class="mw-page-title-main">Solar eclipse of December 26, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, December 26, 2057, with a magnitude of 1.0348. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 5, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 5, 2065, with a magnitude of 0.9123. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 31, 2068</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 3, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "December 15, 2039 Total Solar Eclipse". timeanddate. Retrieved 14 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 August 2024.
  3. "Path of Total Solar Eclipse of 2039 Dec 15". NASA Goddard Space Flight Center Eclipse Website. NASA. Retrieved 9 September 2017.
  4. "Total Solar Eclipse of 2039 Dec 15". EclipseWise.com. Retrieved 14 August 2024.
  5. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. "NASA - Catalog of Solar Eclipses of Saros 152". eclipse.gsfc.nasa.gov.