Solar eclipse of September 12, 2034

Last updated
Solar eclipse of September 12, 2034
SE2034Sep12A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.3936
Magnitude 0.9736
Maximum eclipse
Duration178 s (2 min 58 s)
Coordinates 18°12′S72°36′W / 18.2°S 72.6°W / -18.2; -72.6
Max. width of band102 km (63 mi)
Times (UTC)
Greatest eclipse16:19:28
References
Saros 135 (40 of 71)
Catalog # (SE5000) 9584

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, September 12, 2034, with a magnitude of 0.9736. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Contents

The eclipse will commence over the southern Pacific Ocean, and enter South America. Countries under the path include northern Chile, southern Bolivia, northern Argentina, southern Paraguay, and southern Brazil. The eclipse will then enter the Atlantic Ocean, and terminate approximately 2,000 miles (3,200 km) southeast of South America. [1]

Images

SE2034Sep12A.gif
Animated path

Eclipses in 2034

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 135

Inex

Triad

Solar eclipses of 2033–2036

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [2]

The partial solar eclipse on July 23, 2036 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 2033 to 2036
Descending node Ascending node
SarosMapGammaSarosMapGamma
120 March 30, 2033
SE2033Mar30T.png
Total
0.9778125 September 23, 2033
SE2033Sep23P.png
Partial
−1.1583
130 March 20, 2034
SE2034Mar20T.png
Total
0.2894135 September 12, 2034
SE2034Sep12A.png
Annular
−0.3936
140 March 9, 2035
SE2035Mar09A.png
Annular
−0.4368145 September 2, 2035
SE2035Sep02T.png
Total
0.3727
150 February 27, 2036
SE2036Feb27P.png
Partial
−1.1942155 August 21, 2036
SE2036Aug21P.png
Partial
1.0825

Saros 135

This eclipse is a part of Saros series 135, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 5, 1331. It contains annular eclipses from October 21, 1511 through February 24, 2305; hybrid eclipses on March 8, 2323 and March 18, 2341; and total eclipses from March 29, 2359 through May 22, 2449. The series ends at member 71 as a partial eclipse on August 17, 2593. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 16 at 10 minutes, 41 seconds on December 24, 1601, and the longest duration of totality will be produced by member 62 at 2 minutes, 27 seconds on May 12, 2431. All eclipses in this series occur at the Moon’s ascending node of orbit. [3]

Series members 28–49 occur between 1801 and 2200:
282930
SE1818May05A.png
May 5, 1818
SE1836May15A.png
May 15, 1836
SE1854May26A.png
May 26, 1854
313233
SE1872Jun06A.gif
June 6, 1872
SE1890Jun17A.png
June 17, 1890
SE1908Jun28A.png
June 28, 1908
343536
SE1926Jul09A.png
July 9, 1926
SE1944Jul20A.png
July 20, 1944
SE1962Jul31A.png
July 31, 1962
373839
SE1980Aug10A.png
August 10, 1980
SE1998Aug22A.png
August 22, 1998
SE2016Sep01A.png
September 1, 2016
404242
SE2034Sep12A.png
September 12, 2034
SE2052Sep22A.png
September 22, 2052
SE2070Oct04A.png
October 4, 2070
434445
SE2088Oct14A.png
October 14, 2088
SE2106Oct26A.png
October 26, 2106
SE2124Nov06A.png
November 6, 2124
464748
SE2142Nov17A.png
November 17, 2142
SE2160Nov27A.png
November 27, 2160
SE2178Dec09A.png
December 9, 2178
49
SE2196Dec19A.png
December 19, 2196

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 1, 2000 and July 1, 2076
July 1–2April 19–20February 5–7November 24–25September 12–13
117119121123125
SE2000Jul01P.png
July 1, 2000
SE2004Apr19P.png
April 19, 2004
SE2008Feb07A.png
February 7, 2008
SE2011Nov25P.png
November 25, 2011
SE2015Sep13P.png
September 13, 2015
127129131133135
SE2019Jul02T.png
July 2, 2019
SE2023Apr20H.png
April 20, 2023
SE2027Feb06A.png
February 6, 2027
SE2030Nov25T.png
November 25, 2030
SE2034Sep12A.png
September 12, 2034
137139141143145
SE2038Jul02A.png
July 2, 2038
SE2042Apr20T.png
April 20, 2042
SE2046Feb05A.png
February 5, 2046
SE2049Nov25H.png
November 25, 2049
SE2053Sep12T.png
September 12, 2053
147149151153155
SE2057Jul01A.png
July 1, 2057
SE2061Apr20T.png
April 20, 2061
SE2065Feb05P.png
February 5, 2065
SE2068Nov24P.png
November 24, 2068
SE2072Sep12T.png
September 12, 2072
157
SE2076Jul01P.png
July 1, 2076

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Jun26P.gif
June 26, 1805
(Saros 114)
SE1816May27A.gif
May 27, 1816
(Saros 115)
SE1827Apr26A.gif
April 26, 1827
(Saros 116)
SE1838Mar25T.gif
March 25, 1838
(Saros 117)
SE1849Feb23A.gif
February 23, 1849
(Saros 118)
SE1860Jan23A.png
January 23, 1860
(Saros 119)
SE1870Dec22T.png
December 22, 1870
(Saros 120)
SE1881Nov21A.gif
November 21, 1881
(Saros 121)
SE1892Oct20P.gif
October 20, 1892
(Saros 122)
SE1903Sep21T.png
September 21, 1903
(Saros 123)
SE1914Aug21T.png
August 21, 1914
(Saros 124)
SE1925Jul20A.png
July 20, 1925
(Saros 125)
SE1936Jun19T.png
June 19, 1936
(Saros 126)
SE1947May20T.png
May 20, 1947
(Saros 127)
SE1958Apr19A.png
April 19, 1958
(Saros 128)
SE1969Mar18A.png
March 18, 1969
(Saros 129)
SE1980Feb16T.png
February 16, 1980
(Saros 130)
SE1991Jan15A.png
January 15, 1991
(Saros 131)
SE2001Dec14A.png
December 14, 2001
(Saros 132)
SE2012Nov13T.png
November 13, 2012
(Saros 133)
SE2023Oct14A.png
October 14, 2023
(Saros 134)
SE2034Sep12A.png
September 12, 2034
(Saros 135)
SE2045Aug12T.png
August 12, 2045
(Saros 136)
SE2056Jul12A.png
July 12, 2056
(Saros 137)
SE2067Jun11A.png
June 11, 2067
(Saros 138)
SE2078May11T.png
May 11, 2078
(Saros 139)
SE2089Apr10A.png
April 10, 2089
(Saros 140)
SE2100Mar10A.png
March 10, 2100
(Saros 141)
SE2111Feb08T.png
February 8, 2111
(Saros 142)
SE2122Jan08A.png
January 8, 2122
(Saros 143)
SE2132Dec07A.png
December 7, 2132
(Saros 144)
SE2143Nov07T.png
November 7, 2143
(Saros 145)
SE2154Oct07T.png
October 7, 2154
(Saros 146)
Saros147 31van80 SE2165Sep05A.jpg
September 5, 2165
(Saros 147)
Saros148 30van75 SE2176Aug04T.jpg
August 4, 2176
(Saros 148)
Saros149 30van71 SE2187Jul06T.jpg
July 6, 2187
(Saros 149)
Saros150 27van71 SE2198Jun04A.jpg
June 4, 2198
(Saros 150)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1803Feb21T.png
February 21, 1803
(Saros 127)
SE1832Feb01A.gif
February 1, 1832
(Saros 128)
SE1861Jan11A.gif
January 11, 1861
(Saros 129)
SE1889Dec22T.png
December 22, 1889
(Saros 130)
SE1918Dec03A.png
December 3, 1918
(Saros 131)
SE1947Nov12A.png
November 12, 1947
(Saros 132)
SE1976Oct23T.png
October 23, 1976
(Saros 133)
SE2005Oct03A.png
October 3, 2005
(Saros 134)
SE2034Sep12A.png
September 12, 2034
(Saros 135)
SE2063Aug24T.png
August 24, 2063
(Saros 136)
SE2092Aug03A.png
August 3, 2092
(Saros 137)
SE2121Jul14A.png
July 14, 2121
(Saros 138)
SE2150Jun25T.png
June 25, 2150
(Saros 139)
SE2179Jun05A.png
June 5, 2179
(Saros 140)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 20, 2034</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, March 20, 2034, with a magnitude of 1.0458. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in 13 countries: from east to west, Benin, Nigeria, Cameroon, Chad, Sudan, Egypt, Saudi Arabia, Kuwait, Iran, Afghanistan, Pakistan, India, and China.

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 26, 1990</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, January 26, 1990, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 11, 1961</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. A small annular eclipse covered only 94% of the Sun in a very broad path, 499 km wide at maximum, and lasted 6 minutes and 35 seconds.

<span class="mw-page-title-main">Solar eclipse of January 5, 1954</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, January 5, 1954, with a magnitude of 0.972. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 28, 2063</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063, with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.

<span class="mw-page-title-main">Solar eclipse of July 23, 2093</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, July 23, 2093, with a magnitude of 0.9463. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 14, 2088</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 3, 1918</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, December 3, 1918, with a magnitude of 0.9383. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile including the capital city Santiago, Argentina including capital Buenos Aires, southern Uruguay including capital Montevideo, northeastern tip of South West Africa and southwestern Portuguese Angola. Aconcagua, the highest mountain outside Asia, also lies in the path of annularity.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

<span class="mw-page-title-main">Solar eclipse of March 7, 1932</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, March 7, 1932, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References

  1. "Path of Annular Solar Eclipse of 2034 Sep 12". NASA Goddard Space Flight Center Eclipse Website. NASA. Retrieved 9 September 2017.
  2. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  3. "NASA - Catalog of Solar Eclipses of Saros 135". eclipse.gsfc.nasa.gov.