Solar eclipse of July 22, 1971

Last updated
Solar eclipse of July 22, 1971
SE1971Jul22P.png
Map
Type of eclipse
NaturePartial
Gamma 1.513
Magnitude 0.0689
Maximum eclipse
Coordinates 63°30′N177°00′E / 63.5°N 177°E / 63.5; 177
Times (UTC)
Greatest eclipse9:31:55
References
Saros 116 (70 of 70)
Catalog # (SE5000) 9446

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 22, 1971, [1] with a magnitude of 0.0689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of the eastern Soviet Union and northern Alaska. This was the 70th and final solar eclipse from Solar Saros 116.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

July 22, 1971 Solar Eclipse Times
EventTime (UTC)
Equatorial Conjunction1971 July 22 at 08:38:38.2 UTC
First Penumbral External Contact1971 July 22 at 08:52:56.7 UTC
Ecliptic Conjunction1971 July 22 at 09:15:39.4 UTC
Greatest Eclipse1971 July 22 at 09:31:55.3 UTC
Last Penumbral External Contact1971 July 22 at 10:11:20.6 UTC
July 22, 1971 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.06899
Eclipse Obscuration0.02136
Gamma1.51298
Sun Right Ascension08h04m17.6s
Sun Declination+20°22'36.4"
Sun Semi-Diameter15'44.4"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension08h06m05.8s
Moon Declination+21°43'24.7"
Moon Semi-Diameter15'17.0"
Moon Equatorial Horizontal Parallax0°56'05.5"
ΔT41.8 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of July–August 1971
July 22
Descending node (new moon)
August 6
Ascending node (full moon)
August 20
Descending node (new moon)
SE1971Jul22P.png Lunar eclipse chart close-1971Aug06.png SE1971Aug20P.png
Partial solar eclipse
Solar Saros 116
Total lunar eclipse
Lunar Saros 128
Partial solar eclipse
Solar Saros 154

Eclipses in 1971

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 116

Inex

Triad

Solar eclipses of 1971–1974

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on February 25, 1971 and August 20, 1971 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1971 to 1974
Descending node Ascending node
SarosMapGammaSarosMapGamma
116 July 22, 1971
SE1971Jul22P.png
Partial
1.513121 January 16, 1972
SE1972Jan16A.png
Annular
−0.9365
126 July 10, 1972
SE1972Jul10T.png
Total
0.6872131 January 4, 1973
SE1973Jan04A.png
Annular
−0.2644
136 June 30, 1973
SE1973Jun30T.png
Total
−0.0785141 December 24, 1973
SE1973Dec24A.png
Annular
0.4171
146 June 20, 1974
SE1974Jun20T.png
Total
−0.8239151 December 13, 1974
SE1974Dec13P.png
Partial
1.0797

Saros 116

This eclipse is a part of Saros series 116, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on June 23, 727 AD. It contains annular eclipses from October 10, 907 AD through May 6, 1845. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on July 22, 1971. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 51 at 12 minutes, 2 seconds on December 25, 1628. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 22, 1971 and July 22, 2047
July 22May 9–11February 26–27December 14–15October 2–3
116118120122124
SE1971Jul22P.png
July 22, 1971
SE1975May11P.png
May 11, 1975
SE1979Feb26T.png
February 26, 1979
SE1982Dec15P.png
December 15, 1982
SE1986Oct03H.png
October 3, 1986
126128130132134
SE1990Jul22T.png
July 22, 1990
SE1994May10A.png
May 10, 1994
SE1998Feb26T.png
February 26, 1998
SE2001Dec14A.png
December 14, 2001
SE2005Oct03A.png
October 3, 2005
136138140142144
SE2009Jul22T.png
July 22, 2009
SE2013May10A.png
May 10, 2013
SE2017Feb26A.png
February 26, 2017
SE2020Dec14T.png
December 14, 2020
SE2024Oct02A.png
October 2, 2024
146148150152154
SE2028Jul22T.png
July 22, 2028
SE2032May09A.png
May 9, 2032
SE2036Feb27P.png
February 27, 2036
SE2039Dec15T.png
December 15, 2039
SE2043Oct03A.png
October 3, 2043
156
SE2047Jul22P.png
July 22, 2047

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on March 27, 1884 (part of Saros 108) and December 24, 1916 (part of Saros 111) are also a part of this series but are not included in the table below.

Series members between 1971 and 2200
SE1971Jul22P.png
July 22, 1971
(Saros 116)
SE1982Jun21P.png
June 21, 1982
(Saros 117)
SE1993May21P.png
May 21, 1993
(Saros 118)
SE2004Apr19P.png
April 19, 2004
(Saros 119)
SE2015Mar20T.png
March 20, 2015
(Saros 120)
SE2026Feb17A.png
February 17, 2026
(Saros 121)
SE2037Jan16P.png
January 16, 2037
(Saros 122)
SE2047Dec16P.png
December 16, 2047
(Saros 123)
SE2058Nov16P.png
November 16, 2058
(Saros 124)
SE2069Oct15P.png
October 15, 2069
(Saros 125)
SE2080Sep13P.png
September 13, 2080
(Saros 126)
SE2091Aug15T.png
August 15, 2091
(Saros 127)
SE2102Jul15A.png
July 15, 2102
(Saros 128)
SE2113Jun13T.png
June 13, 2113
(Saros 129)
SE2124May14T.png
May 14, 2124
(Saros 130)
SE2135Apr13A.png
April 13, 2135
(Saros 131)
SE2146Mar12A.png
March 12, 2146
(Saros 132)
SE2157Feb09T.png
February 9, 2157
(Saros 133)
SE2168Jan10A.png
January 10, 2168
(Saros 134)
SE2178Dec09A.png
December 9, 2178
(Saros 135)
SE2189Nov08T.png
November 8, 2189
(Saros 136)
SE2200Oct09A.png
October 9, 2200
(Saros 137)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1826Oct31P.gif
October 31, 1826
(Saros 111)
SE1913Aug31P.png
August 31, 1913
(Saros 114)
SE1942Aug12P.png
August 12, 1942
(Saros 115)
SE1971Jul22P.png
July 22, 1971
(Saros 116)
SE2000Jul01P.png
July 1, 2000
(Saros 117)
SE2029Jun12P.png
June 12, 2029
(Saros 118)
SE2058May22P.png
May 22, 2058
(Saros 119)
SE2087May02P.png
May 2, 2087
(Saros 120)
Saros121 66van71 SE2116Apr13P.jpg
April 13, 2116
(Saros 121)
Saros122 65van70 SE2145Mar23P.jpg
March 23, 2145
(Saros 122)
Saros123 62van70 SE2174Mar03P.jpg
March 3, 2174
(Saros 123)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 5, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Saturday, February 5, 2000, with a magnitude of 0.5795. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s ascending node of orbit on Saturday, July 1, 2000, with a magnitude of 0.4768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 17, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit between Wednesday, April 17 and Thursday, April 18, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 31, 1989</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 21, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, June 21, 1982, with a magnitude of 0.6168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 25, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Monday, January 25, 1982, with a magnitude of 0.5663. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 2, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, October 2, 1978, with a magnitude of 0.6905. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 13, 1974</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, December 13, 1974, with a magnitude of 0.8266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 25, 1971</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, February 25, 1971, with a magnitude of 0.7872. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 20, 1971</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit between Friday, August 20 and Saturday, August 21, 1971, with a magnitude of 0.508. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 11, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, July 11, 1953, with a magnitude of 0.2015. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 21, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit between Thursday, June 20 and Friday, June 21, 2058, with a magnitude of 0.126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 12, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 12, 1942, with a magnitude of 0.0561. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 10, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "July 22, 1971 Partial Solar Eclipse". timeanddate. Retrieved 8 August 2024.
  2. "Partial Solar Eclipse of 1971 Jul 22". EclipseWise.com. Retrieved 8 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 116". eclipse.gsfc.nasa.gov.