Solar eclipse of September 1, 2016

Last updated
Solar eclipse of September 1, 2016
Eclipse 20160901 center.jpg
From L'Étang-Salé, Réunion
SE2016Sep01A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.333
Magnitude 0.9736
Maximum eclipse
Duration186 s (3 min 6 s)
Coordinates 10°42′S37°48′E / 10.7°S 37.8°E / -10.7; 37.8
Max. width of band100 km (62 mi)
Times (UTC)
Greatest eclipse9:08:02
References
Saros 135 (39 of 71)
Catalog # (SE5000) 9544

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 1, 2016, [1] [2] [3] [4] with a magnitude of 0.9736. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.4 days before apogee (on September 6, 2016, at 19:45 UTC), the Moon's apparent diameter was smaller. [5]

Contents

Annularity was visible from parts of Gabon, Congo, Democratic Republic of the Congo, Tanzania, Mozambique, Madagascar, and Réunion. A partial eclipse was visible for most of Africa and parts of Antarctica.

Visibility

SE2016Sep01A.GIF

Animated Path

Images

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [6]

September 1, 2016 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2016 September 01 at 06:14:16.4 UTC
First Umbral External Contact2016 September 01 at 07:18:57.7 UTC
First Central Line2016 September 01 at 07:20:21.3 UTC
First Umbral Internal Contact2016 September 01 at 07:21:45.1 UTC
First Penumbral Internal Contact2016 September 01 at 08:34:59.5 UTC
Ecliptic Conjunction2016 September 01 at 09:04:14.2 UTC
Greatest Duration2016 September 01 at 09:06:18.1 UTC
Greatest Eclipse2016 September 01 at 09:08:02.0 UTC
Equatorial Conjunction2016 September 01 at 09:19:12.7 UTC
Last Penumbral Internal Contact2016 September 01 at 09:40:44.7 UTC
Last Umbral Internal Contact2016 September 01 at 10:54:08.6 UTC
Last Central Line2016 September 01 at 10:55:35.3 UTC
Last Umbral External Contact2016 September 01 at 10:57:01.8 UTC
Last Penumbral External Contact2016 September 01 at 12:01:48.6 UTC
September 1, 2016 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.97362
Eclipse Obscuration0.94794
Gamma−0.33301
Sun Right Ascension10h43m43.3s
Sun Declination+08°03'38.0"
Sun Semi-Diameter15'51.0"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension10h43m22.2s
Moon Declination+07°45'51.0"
Moon Semi-Diameter15'12.4"
Moon Equatorial Horizontal Parallax0°55'48.6"
ΔT68.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of August–September 2016
August 18
Descending node (full moon)
September 1
Ascending node (new moon)
September 16
Descending node (full moon)
Lunar eclipse chart close-2016Aug18.png SE2016Sep01A.png Lunar eclipse chart close-2016Sep16.png
Penumbral lunar eclipse
Lunar Saros 109
Annular solar eclipse
Solar Saros 135
Penumbral lunar eclipse
Lunar Saros 147

Eclipses in 2016

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 135

Inex

Triad

Solar eclipses of 2015–2018

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [7]

The partial solar eclipse on July 13, 2018 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 2015 to 2018
Descending node Ascending node
SarosMapGammaSarosMapGamma
120
Total solar eclipse of March 20, 2015 by Damien Deltenre (licensed for free use). (32844461616).jpg
Totality in Longyearbyen, Svalbard
March 20, 2015
SE2015Mar20T.png
Total
0.94536125
Double Photobomb (21389400576).jpg
Solar Dynamics Observatory

September 13, 2015
SE2015Sep13P.png
Partial
−1.10039
130
Total Solar Eclipse, 9 March 2016, from Balikpapan, East Kalimantan, Indonesia.JPG
Balikpapan, Indonesia
March 9, 2016
SE2016Mar09T.png
Total
0.26092135
Eclipse 20160901 center.jpg
Annularity in L'Étang-Salé, Réunion
September 1, 2016
SE2016Sep01A.png
Annular
−0.33301
140
26-feb-2017 solar ecipse.jpg
Partial from Buenos Aires, Argentina
February 26, 2017
SE2017Feb26A.png
Annular
−0.45780145
2017 Total Solar Eclipse (NHQ201708210100) - square crop.jpg
Totality in Madras, OR, USA
August 21, 2017
Solar eclipse global visibility 2017Aug21T.png
Total
0.43671
150
Eclipse Solar Parcial - 15.02.2018 - Olivos, GBA (Argentina).jpg
Partial in Olivos, Buenos Aires, Argentina
February 15, 2018
SE2018Feb15P.png
Partial
−1.21163155
2018.08.11 1214Z C8F6 Solar Eclipse (43976490201).jpg
Partial in Huittinen, Finland
August 11, 2018
SE2018Aug11P.png
Partial
1.14758

Saros 135

This eclipse is a part of Saros series 135, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 5, 1331. It contains annular eclipses from October 21, 1511 through February 24, 2305; hybrid eclipses on March 8, 2323 and March 18, 2341; and total eclipses from March 29, 2359 through May 22, 2449. The series ends at member 71 as a partial eclipse on August 17, 2593. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 16 at 10 minutes, 41 seconds on December 24, 1601, and the longest duration of totality will be produced by member 62 at 2 minutes, 27 seconds on May 12, 2431. All eclipses in this series occur at the Moon’s ascending node of orbit. [8]

Series members 28–49 occur between 1801 and 2200:
282930
SE1818May05A.png
May 5, 1818
SE1836May15A.png
May 15, 1836
SE1854May26A.png
May 26, 1854
313233
SE1872Jun06A.gif
June 6, 1872
SE1890Jun17A.png
June 17, 1890
SE1908Jun28A.png
June 28, 1908
343536
SE1926Jul09A.png
July 9, 1926
SE1944Jul20A.png
July 20, 1944
SE1962Jul31A.png
July 31, 1962
373839
SE1980Aug10A.png
August 10, 1980
SE1998Aug22A.png
August 22, 1998
SE2016Sep01A.png
September 1, 2016
404242
SE2034Sep12A.png
September 12, 2034
SE2052Sep22A.png
September 22, 2052
SE2070Oct04A.png
October 4, 2070
434445
SE2088Oct14A.png
October 14, 2088
SE2106Oct26A.png
October 26, 2106
SE2124Nov06A.png
November 6, 2124
464748
SE2142Nov17A.png
November 17, 2142
SE2160Nov27A.png
November 27, 2160
SE2178Dec09A.png
December 9, 2178
49
SE2196Dec19A.png
December 19, 2196

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between June 21, 1982 and June 21, 2058
June 21April 8–9January 26November 13–14September 1–2
117119121123125
SE1982Jun21P.png
June 21, 1982
SE1986Apr09P.png
April 9, 1986
SE1990Jan26A.png
January 26, 1990
SE1993Nov13P.png
November 13, 1993
SE1997Sep02P.png
September 2, 1997
127129131133135
SE2001Jun21T.png
June 21, 2001
SE2005Apr08H.png
April 8, 2005
SE2009Jan26A.png
January 26, 2009
SE2012Nov13T.png
November 13, 2012
SE2016Sep01A.png
September 1, 2016
137139141143145
SE2020Jun21A.png
June 21, 2020
SE2024Apr08T.png
April 8, 2024
SE2028Jan26A.png
January 26, 2028
SE2031Nov14H.png
November 14, 2031
SE2035Sep02T.png
September 2, 2035
147149151153155
SE2039Jun21A.png
June 21, 2039
SE2043Apr09T.png
April 9, 2043
SE2047Jan26P.png
January 26, 2047
SE2050Nov14P.png
November 14, 2050
SE2054Sep02P.png
September 2, 2054
157
SE2058Jun21P.png
June 21, 2058

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Apr14A.gif
April 14, 1809
(Saros 116)
SE1820Mar14T.gif
March 14, 1820
(Saros 117)
SE1831Feb12A.gif
February 12, 1831
(Saros 118)
SE1842Jan11A.gif
January 11, 1842
(Saros 119)
SE1852Dec11T.gif
December 11, 1852
(Saros 120)
SE1863Nov11A.png
November 11, 1863
(Saros 121)
SE1874Oct10An.gif
October 10, 1874
(Saros 122)
SE1885Sep08T.png
September 8, 1885
(Saros 123)
SE1896Aug09T.png
August 9, 1896
(Saros 124)
SE1907Jul10A.png
July 10, 1907
(Saros 125)
SE1918Jun08T.png
June 8, 1918
(Saros 126)
SE1929May09T.png
May 9, 1929
(Saros 127)
SE1940Apr07A.png
April 7, 1940
(Saros 128)
SE1951Mar07A.png
March 7, 1951
(Saros 129)
SE1962Feb05T.png
February 5, 1962
(Saros 130)
SE1973Jan04A.png
January 4, 1973
(Saros 131)
SE1983Dec04A.png
December 4, 1983
(Saros 132)
SE1994Nov03T.png
November 3, 1994
(Saros 133)
SE2005Oct03A.png
October 3, 2005
(Saros 134)
SE2016Sep01A.png
September 1, 2016
(Saros 135)
SE2027Aug02T.png
August 2, 2027
(Saros 136)
SE2038Jul02A.png
July 2, 2038
(Saros 137)
SE2049May31A.png
May 31, 2049
(Saros 138)
SE2060Apr30T.png
April 30, 2060
(Saros 139)
SE2071Mar31A.png
March 31, 2071
(Saros 140)
SE2082Feb27A.png
February 27, 2082
(Saros 141)
SE2093Jan27T.png
January 27, 2093
(Saros 142)
SE2103Dec29A.png
December 29, 2103
(Saros 143)
SE2114Nov27A.png
November 27, 2114
(Saros 144)
SE2125Oct26T.png
October 26, 2125
(Saros 145)
SE2136Sep26T.png
September 26, 2136
(Saros 146)
Saros147 30van80 SE2147Aug26A.jpg
August 26, 2147
(Saros 147)
SE2158Jul25T.png
July 25, 2158
(Saros 148)
Saros149 29van71 SE2169Jun25T.jpg
June 25, 2169
(Saros 149)
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
(Saros 150)
SE2191Apr23A.png
April 23, 2191
(Saros 151)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1814Jan21A.gif
January 21, 1814
(Saros 128)
SE1842Dec31A.gif
December 31, 1842
(Saros 129)
SE1871Dec12T.gif
December 12, 1871
(Saros 130)
SE1900Nov22A.png
November 22, 1900
(Saros 131)
SE1929Nov01A.png
November 1, 1929
(Saros 132)
SE1958Oct12T.png
October 12, 1958
(Saros 133)
SE1987Sep23A.png
September 23, 1987
(Saros 134)
SE2016Sep01A.png
September 1, 2016
(Saros 135)
SE2045Aug12T.png
August 12, 2045
(Saros 136)
SE2074Jul24A.png
July 24, 2074
(Saros 137)
SE2103Jul04A.png
July 4, 2103
(Saros 138)
SE2132Jun13T.png
June 13, 2132
(Saros 139)
SE2161May25A.png
May 25, 2161
(Saros 140)
SE2190May04A.png
May 4, 2190
(Saros 141)

Notes

  1. "September 1, 2016 Annular Solar Eclipse". timeanddate. Retrieved 12 August 2024.
  2. Wall, Mike (August 31, 2016). "See a 'Ring of Fire' Annular Solar Eclipse Thursday Via Slooh Webcast". Space.com.
  3. "'Ring of fire' eclipse for African stargazers". phys.org.
  4. Bowerman, Mary. "Stunning images of 'Ring of Fire' eclipse over Africa". USA TODAY.
  5. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 12 August 2024.
  6. "Annular Solar Eclipse of 2016 Sep 01". EclipseWise.com. Retrieved 12 August 2024.
  7. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  8. "NASA - Catalog of Solar Eclipses of Saros 135". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 31, 1962</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 31, 1962, with a magnitude of 0.9716. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.75 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of August 21, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 5.6 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 11, 1969</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, September 11, 1969, with a magnitude of 0.969. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.2 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of March 18, 1969</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, March 18, 1969, with a magnitude of 0.9954. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 5.1 days after perigee and 7.7 days before apogee.

<span class="mw-page-title-main">Solar eclipse of March 7, 1951</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Wednesday, March 7 and Thursday, March 8, 1951, with a magnitude of 0.9896. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 5.5 days after perigee and 7.4 days before apogee.

<span class="mw-page-title-main">Solar eclipse of September 1, 1951</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 1, 1951, with a magnitude of 0.9747. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 5.4 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of August 10, 1915</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit between Tuesday, August 10 and Wednesday, August 11, 1915, with a magnitude of 0.9853. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 5.8 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2060</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 15, 2096</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 3, 2092</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, August 3, 2092, with a magnitude of 0.9794. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 20, 1944</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of July 9, 1926</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Friday, July 9 and Saturday, July 10, 1926, with a magnitude of 0.968. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter was smaller.

References