Solar eclipse of November 14, 2050

Last updated
Solar eclipse of November 14, 2050
SE2050Nov14P.png
Map
Type of eclipse
NaturePartial
Gamma 1.0447
Magnitude 0.8874
Maximum eclipse
Coordinates 69°30′N1°00′E / 69.5°N 1°E / 69.5; 1
Times (UTC)
Greatest eclipse13:30:53
References
Saros 153 (11 of 70)
Catalog # (SE5000) 9620

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 14, 2050, with a magnitude of 0.8874. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

Eclipses in 2050

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 153

Inex

Triad

Solar eclipses of 2047–2050

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

The partial solar eclipses on January 26, 2047 and July 22, 2047 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2047 to 2050
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 June 23, 2047
SE2047Jun23P.png
Partial
1.3766123 December 16, 2047
SE2047Dec16P.png
Partial
−1.0661
128 June 11, 2048
SE2048Jun11A.png
Annular
0.6468133 December 5, 2048
SE2048Dec05T.png
Total
−0.3973
138 May 31, 2049
SE2049May31A.png
Annular
−0.1187143 November 25, 2049
SE2049Nov25H.png
Hybrid
0.2943
148 May 20, 2050
SE2050May20H.png
Hybrid
−0.8688153 November 14, 2050
SE2050Nov14P.png
Partial
1.0447

Saros 153

This eclipse is a part of Saros series 153, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 28, 1870. It contains annular eclipses from December 17, 2104 through May 26, 2970. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on August 22, 3114. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 38 at 7 minutes, 1 seconds on September 5, 2537. All eclipses in this series occur at the Moon’s ascending node of orbit. [2]

Series members 1–19 occur between 1870 and 2200:
123
SE1870Jul28Pb.gif
July 28, 1870
SE1888Aug07P.gif
August 7, 1888
SE1906Aug20P.png
August 20, 1906
456
SE1924Aug30P.png
August 30, 1924
SE1942Sep10P.png
September 10, 1942
SE1960Sep20P.png
September 20, 1960
789
SE1978Oct02P.png
October 2, 1978
SE1996Oct12P.png
October 12, 1996
SE2014Oct23P.png
October 23, 2014
101112
SE2032Nov03P.png
November 3, 2032
SE2050Nov14P.png
November 14, 2050
SE2068Nov24P.png
November 24, 2068
131415
SE2086Dec06P.png
December 6, 2086
Saros153 14van70 SE2104Dec17A.jpg
December 17, 2104
Saros153 15van70 SE2122Dec28A.jpg
December 28, 2122
161718
Saros153 16van70 SE2141Jan08A.jpg
January 8, 2141
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
Saros153 18van70 SE2177Jan29A.jpg
January 29, 2177
19
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between June 21, 1982 and June 21, 2058
June 21April 8–9January 26November 13–14September 1–2
117119121123125
SE1982Jun21P.png
June 21, 1982
SE1986Apr09P.png
April 9, 1986
SE1990Jan26A.png
January 26, 1990
SE1993Nov13P.png
November 13, 1993
SE1997Sep02P.png
September 2, 1997
127129131133135
SE2001Jun21T.png
June 21, 2001
SE2005Apr08H.png
April 8, 2005
SE2009Jan26A.png
January 26, 2009
SE2012Nov13T.png
November 13, 2012
SE2016Sep01A.png
September 1, 2016
137139141143145
SE2020Jun21A.png
June 21, 2020
SE2024Apr08T.png
April 8, 2024
SE2028Jan26A.png
January 26, 2028
SE2031Nov14H.png
November 14, 2031
SE2035Sep02T.png
September 2, 2035
147149151153155
SE2039Jun21A.png
June 21, 2039
SE2043Apr09T.png
April 9, 2043
SE2047Jan26P.png
January 26, 2047
SE2050Nov14P.png
November 14, 2050
SE2054Sep02P.png
September 2, 2054
157
SE2058Jun21P.png
June 21, 2058

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2105
SE1810Sep28A.gif
September 28, 1810
(Saros 131)
SE1821Aug27A.gif
August 27, 1821
(Saros 132)
SE1832Jul27T.gif
July 27, 1832
(Saros 133)
SE1843Jun27H.gif
June 27, 1843
(Saros 134)
SE1854May26A.png
May 26, 1854
(Saros 135)
SE1865Apr25T.png
April 25, 1865
(Saros 136)
SE1876Mar25A.gif
March 25, 1876
(Saros 137)
SE1887Feb22A.png
February 22, 1887
(Saros 138)
SE1898Jan22T.png
January 22, 1898
(Saros 139)
SE1908Dec23H.png
December 23, 1908
(Saros 140)
SE1919Nov22A.png
November 22, 1919
(Saros 141)
SE1930Oct21T.png
October 21, 1930
(Saros 142)
SE1941Sep21T.png
September 21, 1941
(Saros 143)
SE1952Aug20A.png
August 20, 1952
(Saros 144)
SE1963Jul20T.png
July 20, 1963
(Saros 145)
SE1974Jun20T.png
June 20, 1974
(Saros 146)
SE1985May19P.png
May 19, 1985
(Saros 147)
SE1996Apr17P.png
April 17, 1996
(Saros 148)
SE2007Mar19P.png
March 19, 2007
(Saros 149)
SE2018Feb15P.png
February 15, 2018
(Saros 150)
SE2029Jan14P.png
January 14, 2029
(Saros 151)
SE2039Dec15T.png
December 15, 2039
(Saros 152)
SE2050Nov14P.png
November 14, 2050
(Saros 153)
SE2061Oct13A.png
October 13, 2061
(Saros 154)
SE2072Sep12T.png
September 12, 2072
(Saros 155)
SE2083Aug13P.png
August 13, 2083
(Saros 156)
SE2094Jul12P.png
July 12, 2094
(Saros 157)
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1819Apr24P.png
April 24, 1819
(Saros 145)
SE1848Apr03P.png
April 3, 1848
(Saros 146)
SE1877Mar15P.gif
March 15, 1877
(Saros 147)
SE1906Feb23P.png
February 23, 1906
(Saros 148)
SE1935Feb03P.png
February 3, 1935
(Saros 149)
SE1964Jan14P.png
January 14, 1964
(Saros 150)
SE1992Dec24P.png
December 24, 1992
(Saros 151)
SE2021Dec04T.png
December 4, 2021
(Saros 152)
SE2050Nov14P.png
November 14, 2050
(Saros 153)
SE2079Oct24A.png
October 24, 2079
(Saros 154)
Saros155 11van71 SE2108Oct05T.jpg
October 5, 2108
(Saros 155)
Saros156 08van69 SE2137Sep15P.jpg
September 15, 2137
(Saros 156)
Saros157 07van70 SE2166Aug25A.jpg
August 25, 2166
(Saros 157)
Saros158 08van70 SE2195Aug05T.jpg
August 5, 2195
(Saros 158)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of July 13, 2018</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, July 13, 2018, with a magnitude of 0.3365. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The moon's penumbra touched a small part of Antarctica, and southern Australia in Tasmania, where the eclipse was observed with a magnitude of about 0.1. The eclipse was also visible in Stewart Island, an island south of New Zealand.

<span class="mw-page-title-main">Solar eclipse of August 11, 2018</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, August 11, 2018, with a magnitude of 0.7368. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. The eclipse was visible in the north of North America, Greenland, Northern Europe, and northeastern Asia.

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 5, 2048</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, December 5, 2048, with a magnitude of 1.044. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight and turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region spanning thousands of kilometres.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 5, 2046</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Monday, February 5, 2046, with a magnitude of 0.9232. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This eclipse was observable from parts of the Antarctic Ocean and Indian Ocean.

<span class="mw-page-title-main">Solar eclipse of September 20, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, September 20, 1960, with a magnitude of 0.6139. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It began in northeast Russia near sunrise on September 21, and ended near sunset over North America on September 20, one day earlier because of the effects of the International Date Line.

<span class="mw-page-title-main">Solar eclipse of January 26, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, January 26, 2047, with a magnitude of 0.8907. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, July 22, 2047, with a magnitude of 0.3604. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 16, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, December 16, 2047, with a magnitude of 0.8816. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 23, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 23, 2047, with a magnitude of 0.3129. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 25, 2049</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 4, 2051</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, October 4, 2051, with a magnitude of 0.6024. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 2, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 2, 2054, with a magnitude of 0.9793. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 3, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, August 3, 2054, with a magnitude of 0.0655. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This event will be the 71st and final event of Solar Saros 117.

<span class="mw-page-title-main">Solar eclipse of July 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, June 1, 2076, with a magnitude of 0.2897. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 18, 1931</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, April 18, 1931, with a magnitude of 0.5107. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 153". eclipse.gsfc.nasa.gov.