Solar eclipse of January 16, 1972

Last updated
Solar eclipse of January 16, 1972
SE1972Jan16A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.9365
Magnitude 0.9692
Maximum eclipse
Duration113 s (1 min 53 s)
Coordinates 74°54′S107°42′E / 74.9°S 107.7°E / -74.9; 107.7
Max. width of band321 km (199 mi)
Times (UTC)
Greatest eclipse11:03:22
References
Saros 121 (58 of 71)
Catalog # (SE5000) 9447

An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, January 16, 1972, with a magnitude of 0.9692. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Contents

The areas included were the whole of Antarctica, a part of the southernmost portion of South America much of it in Argentina and a smaller part of Chile, much of it in the region of Patagonia, also it included New Amsterdam and the southern islands of the Indian Ocean,. The annular eclipse took place in western, southern and eastern Antarctica with its greatest eclipse in the eastcentral portion of the continent near the 75th parallel. The eclipse's edges were in Réunion and Mauritius, the eclipse was close to the island of Madagascar. The subsolar portion was in northcentral South West Africa (now Namibia).

Eclipses in 1972

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 121

Inex

Triad

Solar eclipses of 1971–1974

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

The partial solar eclipses on February 25, 1971 and August 20, 1971 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1971 to 1974
Descending node Ascending node
SarosMapGammaSarosMapGamma
116 July 22, 1971
SE1971Jul22P.png
Partial
1.513121 January 16, 1972
SE1972Jan16A.png
Annular
−0.9365
126 July 10, 1972
SE1972Jul10T.png
Total
0.6872131 January 4, 1973
SE1973Jan04A.png
Annular
−0.2644
136 June 30, 1973
SE1973Jun30T.png
Total
−0.0785141 December 24, 1973
SE1973Dec24A.png
Annular
0.4171
146 June 20, 1974
SE1974Jun20T.png
Total
−0.8239151 December 13, 1974
SE1974Dec13P.png
Partial
1.0797

Saros 121

This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 25, 944 AD. It contains total eclipses from July 10, 1070 through October 9, 1809; hybrid eclipses on October 20, 1827 and October 30, 1845; and annular eclipses from November 11, 1863 through February 28, 2044. The series ends at member 71 as a partial eclipse on June 7, 2206. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 6 minutes, 20 seconds on June 21, 1629, and the longest duration of annularity will be produced by member 62 at 2 minutes, 27 seconds on February 28, 2044. All eclipses in this series occur at the Moon’s ascending node of orbit. [2]

Series members 49–70 occur between 1801 and 2200:
495051
SE1809Oct09T.gif
October 9, 1809
SE1827Oct20H.gif
October 20, 1827
SE1845Oct30H.gif
October 30, 1845
525354
SE1863Nov11A.gif
November 11, 1863
SE1881Nov21A.png
November 21, 1881
SE1899Dec03A.png
December 3, 1899
555657
SE1917Dec14A.png
December 14, 1917
SE1935Dec25A.png
December 25, 1935
SE1954Jan05A.png
January 5, 1954
585960
SE1972Jan16A.png
January 16, 1972
SE1990Jan26A.png
January 26, 1990
SE2008Feb07A.png
February 7, 2008
616263
SE2026Feb17A.png
February 17, 2026
SE2044Feb28A.png
February 28, 2044
SE2062Mar11P.png
March 11, 2062
646566
SE2080Mar21P.png
March 21, 2080
SE2098Apr01P.png
April 1, 2098
Saros121 66van71 SE2116Apr13P.jpg
April 13, 2116
676869
Saros121 67van71 SE2134Apr24P.jpg
April 24, 2134
Saros121 68van71 SE2152May04P.jpg
May 4, 2152
Saros121 69van71 SE2170May16P.jpg
May 16, 2170
70
Saros121 70van71 SE2188May26P.jpg
May 26, 2188

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

20 eclipse events between June 10, 1964 and August 21, 2036
June 10–11March 28–29January 14–16November 3August 21–22
117119121123125
SE1964Jun10P.png
June 10, 1964
SE1968Mar28P.png
March 28, 1968
SE1972Jan16A.png
January 16, 1972
SE1975Nov03P.png
November 3, 1975
SE1979Aug22A.png
August 22, 1979
127129131133135
SE1983Jun11T.png
June 11, 1983
SE1987Mar29H.png
March 29, 1987
SE1991Jan15A.png
January 15, 1991
SE1994Nov03T.png
November 3, 1994
SE1998Aug22A.png
August 22, 1998
137139141143145
SE2002Jun10A.png
June 10, 2002
SE2006Mar29T.png
March 29, 2006
SE2010Jan15A.png
January 15, 2010
SE2013Nov03H.png
November 3, 2013
SE2017Aug21T.png
August 21, 2017
147149151153155
SE2021Jun10A.png
June 10, 2021
SE2025Mar29P.png
March 29, 2025
SE2029Jan14P.png
January 14, 2029
SE2032Nov03P.png
November 3, 2032
SE2036Aug21P.png
August 21, 2036

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1819Mar25P.gif
March 25, 1819
(Saros 107)
SE1830Feb23P.gif
February 23, 1830
(Saros 108)
SE1841Jan22P.gif
January 22, 1841
(Saros 109)
SE1862Nov21P.gif
November 21, 1862
(Saros 111)
SE1895Aug20P.gif
August 20, 1895
(Saros 114)
SE1906Jul21P.png
July 21, 1906
(Saros 115)
SE1917Jun19P.png
June 19, 1917
(Saros 116)
SE1928May19T.png
May 19, 1928
(Saros 117)
SE1939Apr19A.png
April 19, 1939
(Saros 118)
SE1950Mar18A.png
March 18, 1950
(Saros 119)
SE1961Feb15T.png
February 15, 1961
(Saros 120)
SE1972Jan16A.png
January 16, 1972
(Saros 121)
SE1982Dec15P.png
December 15, 1982
(Saros 122)
SE1993Nov13P.png
November 13, 1993
(Saros 123)
SE2004Oct14P.png
October 14, 2004
(Saros 124)
SE2015Sep13P.png
September 13, 2015
(Saros 125)
SE2026Aug12T.png
August 12, 2026
(Saros 126)
SE2037Jul13T.png
July 13, 2037
(Saros 127)
SE2048Jun11A.png
June 11, 2048
(Saros 128)
SE2059May11T.png
May 11, 2059
(Saros 129)
SE2070Apr11T.png
April 11, 2070
(Saros 130)
SE2081Mar10A.png
March 10, 2081
(Saros 131)
SE2092Feb07A.png
February 7, 2092
(Saros 132)
SE2103Jan08T.png
January 8, 2103
(Saros 133)
SE2113Dec08A.png
December 8, 2113
(Saros 134)
SE2124Nov06A.png
November 6, 2124
(Saros 135)
SE2135Oct07T.png
October 7, 2135
(Saros 136)
SE2146Sep06A.png
September 6, 2146
(Saros 137)
SE2157Aug05A.png
August 5, 2157
(Saros 138)
SE2168Jul05T.png
July 5, 2168
(Saros 139)
SE2179Jun05A.png
June 5, 2179
(Saros 140)
SE2190May04A.png
May 4, 2190
(Saros 141)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1827Apr26A.gif
April 26, 1827
(Saros 116)
SE1856Apr05T.gif
April 5, 1856
(Saros 117)
SE1885Mar16A.gif
March 16, 1885
(Saros 118)
SE1914Feb25A.png
February 25, 1914
(Saros 119)
SE1943Feb04T.png
February 4, 1943
(Saros 120)
SE1972Jan16A.png
January 16, 1972
(Saros 121)
SE2000Dec25P.png
December 25, 2000
(Saros 122)
SE2029Dec05P.png
December 5, 2029
(Saros 123)
SE2058Nov16P.png
November 16, 2058
(Saros 124)
SE2087Oct26P.png
October 26, 2087
(Saros 125)
Saros126 53van72 SE2116Oct06P.jpg
October 6, 2116
(Saros 126)
Saros127 65van82 SE2145Sep16P.jpg
September 16, 2145
(Saros 127)
Saros128 67van73 SE2174Aug27P.jpg
August 27, 2174
(Saros 128)

Notes

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 121". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 26, 1990</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, January 26, 1990, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 26, 2028</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, January 26, 2028, with a magnitude of 0.9208. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 24, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973, with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from southern Mexico, southwestern Nicaragua, Costa Rica including the capital city San José, Panama, Colombia including the capital city Bogotá, southern Venezuela, Brazil, southern Guyana, southern Dutch Guiana, southern French Guiana, Portuguese Cape Verde including the capital city Praia, Mauritania including the capital city Nouakchott, Spanish Sahara, Mali, and Algeria.

<span class="mw-page-title-main">Solar eclipse of February 5, 2046</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Monday, February 5, 2046, with a magnitude of 0.9232. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 11, 1961</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. A small annular eclipse covered only 94% of the Sun in a very broad path, 499 km wide at maximum, and lasted 6 minutes and 35 seconds.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 21, 2099</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 21, 2099, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.

<span class="mw-page-title-main">Solar eclipse of July 23, 2093</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, July 23, 2093, with a magnitude of 0.9463. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 14, 2088</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 20, 1944</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from British Uganda, Anglo-Egyptian Sudan, British Kenya, Ethiopia, British Somaliland, British Raj, Burma, Thailand, French Indochina, Philippines, South Seas Mandate in Japan the Territory of New Guinea.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

<span class="mw-page-title-main">Solar eclipse of March 7, 1932</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, March 7, 1932, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References