Solar eclipse of March 21, 2080

Last updated
Solar eclipse of March 21, 2080
SE2080Mar21P.png
Map
Type of eclipse
NaturePartial
Gamma −1.0578
Magnitude 0.8734
Maximum eclipse
Coordinates 60°54′S85°54′E / 60.9°S 85.9°E / -60.9; 85.9
Times (UTC)
Greatest eclipse12:20:15
References
Saros 121 (64 of 71)
Catalog # (SE5000) 9687

A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, March 21, 2080, [1] with a magnitude of 0.8734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

The partial solar eclipse will be visible for parts of Antarctica and Southern Africa.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

March 21, 2080 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2080 March 21 at 10:11:39.8 UTC
Equatorial Conjunction2080 March 21 at 11:13:57.1 UTC
Ecliptic Conjunction2080 March 21 at 12:08:27.3 UTC
Greatest Eclipse2080 March 21 at 12:20:15.4 UTC
Last Penumbral External Contact2080 March 21 at 14:29:11.4 UTC
March 21, 2080 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.87343
Eclipse Obscuration0.82517
Gamma−1.05777
Sun Right Ascension00h06m37.3s
Sun Declination+00°43'02.5"
Sun Semi-Diameter16'03.3"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension00h08m33.2s
Moon Declination-00°09'04.7"
Moon Semi-Diameter15'24.0"
Moon Equatorial Horizontal Parallax0°56'31.2"
ΔT105.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March–April 2080
March 21
Ascending node (new moon)
April 4
Descending node (full moon)
SE2080Mar21P.png Lunar eclipse chart close-2080Apr04.png
Partial solar eclipse
Solar Saros 121
Total lunar eclipse
Lunar Saros 133

Eclipses in 2080

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 121

Inex

Triad

Solar eclipses of 2080–2083

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on July 15, 2083 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 2080 to 2083
Ascending node Descending node
SarosMapGammaSarosMapGamma
121 March 21, 2080
SE2080Mar21P.png
Partial
−1.0578126 September 13, 2080
SE2080Sep13P.png
Partial
1.0723
131 March 10, 2081
SE2081Mar10A.png
Annular
−0.3653136 September 3, 2081
SE2081Sep03T.png
Total
0.3378
141 February 27, 2082
SE2082Feb27A.png
Annular
0.3361146 August 24, 2082
SE2082Aug24T.png
Total
−0.4004
151 February 16, 2083
SE2083Feb16P.png
Partial
1.017156 August 13, 2083
SE2083Aug13P.png
Partial
−1.2064

Saros 121

This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 25, 944 AD. It contains total eclipses from July 10, 1070 through October 9, 1809; hybrid eclipses on October 20, 1827 and October 30, 1845; and annular eclipses from November 11, 1863 through February 28, 2044. The series ends at member 71 as a partial eclipse on June 7, 2206. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 6 minutes, 20 seconds on June 21, 1629, and the longest duration of annularity will be produced by member 62 at 2 minutes, 27 seconds on February 28, 2044. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]

Series members 49–70 occur between 1801 and 2200:
495051
SE1809Oct09T.gif
October 9, 1809
SE1827Oct20H.gif
October 20, 1827
SE1845Oct30H.gif
October 30, 1845
525354
SE1863Nov11A.gif
November 11, 1863
SE1881Nov21A.png
November 21, 1881
SE1899Dec03A.png
December 3, 1899
555657
SE1917Dec14A.png
December 14, 1917
SE1935Dec25A.png
December 25, 1935
SE1954Jan05A.png
January 5, 1954
585960
SE1972Jan16A.png
January 16, 1972
SE1990Jan26A.png
January 26, 1990
SE2008Feb07A.png
February 7, 2008
616263
SE2026Feb17A.png
February 17, 2026
SE2044Feb28A.png
February 28, 2044
SE2062Mar11P.png
March 11, 2062
646566
SE2080Mar21P.png
March 21, 2080
SE2098Apr01P.png
April 1, 2098
Saros121 66van71 SE2116Apr13P.jpg
April 13, 2116
676869
Saros121 67van71 SE2134Apr24P.jpg
April 24, 2134
Saros121 68van71 SE2152May04P.jpg
May 4, 2152
Saros121 69van71 SE2170May16P.jpg
May 16, 2170
70
Saros121 70van71 SE2188May26P.jpg
May 26, 2188

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between June 1, 2076 and October 27, 2163
June 1–3March 21–22January 7–8October 26–27August 14–15
119121123125127
SE2076Jun01P.png
June 1, 2076
SE2080Mar21P.png
March 21, 2080
SE2084Jan07P.png
January 7, 2084
SE2087Oct26P.png
October 26, 2087
SE2091Aug15T.png
August 15, 2091
129131133135137
SE2095Jun02T.png
June 2, 2095
SE2099Mar21A.png
March 21, 2099
SE2103Jan08T.png
January 8, 2103
SE2106Oct26A.png
October 26, 2106
SE2110Aug15A.png
August 15, 2110
139141143145147
SE2114Jun03T.png
June 3, 2114
SE2118Mar22A.png
March 22, 2118
SE2122Jan08A.png
January 8, 2122
SE2125Oct26T.png
October 26, 2125
SE2129Aug15A.png
August 15, 2129
149151153155157
SE2133Jun03T.png
June 3, 2133
Saros151 21van72 SE2137Mar21A.jpg
March 21, 2137
SE2141Jan08A.png
January 8, 2141
Saros155 13van71 SE2144Oct26T.jpg
October 26, 2144
Saros157 06van70 SE2148Aug14P.jpg
August 14, 2148
159161163165
Saros159 02van70 SE2152Jun03P.jpg
June 3, 2152
Saros165 02van72 SE2163Oct27P.jpg
October 27, 2163

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 2036 and 2200
SE2036Jul23P.png
July 23, 2036
(Saros 117)
SE2047Jun23P.png
June 23, 2047
(Saros 118)
SE2058May22P.png
May 22, 2058
(Saros 119)
SE2069Apr21P.png
April 21, 2069
(Saros 120)
SE2080Mar21P.png
March 21, 2080
(Saros 121)
SE2091Feb18P.png
February 18, 2091
(Saros 122)
Saros123 58van70 SE2102Jan19P.jpg
January 19, 2102
(Saros 123)
Saros124 60van73 SE2112Dec19P.jpg
December 19, 2112
(Saros 124)
Saros125 60van73 SE2123Nov18P.jpg
November 18, 2123
(Saros 125)
Saros126 54van72 SE2134Oct17P.jpg
October 17, 2134
(Saros 126)
Saros127 65van82 SE2145Sep16P.jpg
September 16, 2145
(Saros 127)
Saros128 66van73 SE2156Aug16P.jpg
August 16, 2156
(Saros 128)
Saros129 60van80 SE2167Jul16T.jpg
July 16, 2167
(Saros 129)
SE2178Jun16T.png
June 16, 2178
(Saros 130)
SE2189May15A.png
May 15, 2189
(Saros 131)
SE2200Apr14T.png
April 14, 2200
(Saros 132)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1819Sep19Pe.gif
September 19, 1819
(Saros 112)
SE1848Aug28P.gif
August 28, 1848
(Saros 113)
SE1877Aug09P.gif
August 9, 1877
(Saros 114)
SE1906Jul21P.png
July 21, 1906
(Saros 115)
SE1935Jun30P.png
June 30, 1935
(Saros 116)
SE1964Jun10P.png
June 10, 1964
(Saros 117)
SE1993May21P.png
May 21, 1993
(Saros 118)
SE2022Apr30P.png
April 30, 2022
(Saros 119)
SE2051Apr11P.png
April 11, 2051
(Saros 120)
SE2080Mar21P.png
March 21, 2080
(Saros 121)
Saros122 63van70 SE2109Mar01P.jpg
March 1, 2109
(Saros 122)
Saros123 60van70 SE2138Feb09P.jpg
February 9, 2138
(Saros 123)
Saros124 63van73 SE2167Jan21P.jpg
January 21, 2167
(Saros 124)
Saros125 64van73 SE2195Dec31P.jpg
December 31, 2195
(Saros 125)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 11, 2051</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Monday, April 10 and Tuesday, April 11, 2051, with a magnitude of 0.9849. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 21, 1993</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, May 21, 1993, with a magnitude of 0.7352. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 13, 1993</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit between Saturday, November 13 and Sunday, November 14, 1993, with a magnitude of 0.928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 3, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 13, 2080</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, September 13, 2080, with a magnitude of 0.8743. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 25, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, September 25, 2098, with a magnitude of 0.7871. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 3, 2073</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, August 3, 2073, with a magnitude of 1.0294. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 15, 2091</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, August 15, 2091, with a magnitude of 1.0216. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 21, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 2, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, May 2, 2087, with a magnitude of 0.8011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 11, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 11, 2062, with a magnitude of 0.9331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 15, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 15, 2069, with a magnitude of 0.5298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 7, 2073</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Monday, February 6 and Tuesday, February 7, 2073, with a magnitude of 0.6768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, June 1, 2076, with a magnitude of 0.2897. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 26, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, November 26, 2076, with a magnitude of 0.7315. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 18, 2091</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 10, 2089</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 10, 2089, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 1, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 1, 2098, with a magnitude of 0.7984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 26, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, October 26, 2087, with a magnitude of 0.4696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 7, 2084</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, January 7, 2084, with a magnitude of 0.8723. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "March 21, 2080 Partial Solar Eclipse". timeanddate. Retrieved 22 August 2024.
  2. "Partial Solar Eclipse of 2080 Mar 21". EclipseWise.com. Retrieved 22 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 121". eclipse.gsfc.nasa.gov.