Solar eclipse of September 22, 2052

Last updated
Solar eclipse of September 22, 2052
SE2052Sep22A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.448
Magnitude 0.9734
Maximum eclipse
Duration171 s (2 min 51 s)
Coordinates 25°42′S175°00′E / 25.7°S 175°E / -25.7; 175
Max. width of band106 km (66 mi)
Times (UTC)
Greatest eclipse23:39:10
References
Saros 135 (41 of 71)
Catalog # (SE5000) 9624

An annular solar eclipse will occur at the Moon's ascending node of orbit between Sunday, September 22 and Monday, September 23, 2052, [1] with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.9 days before apogee (on September 28, 2052, at 20:25 UTC), the Moon's apparent diameter will be smaller. [2]

Contents

The path of annularity will be visible from parts of southern Indonesia, East Timor, the northern tip of Queensland, Australia, and New Caledonia. A partial solar eclipse will also be visible for parts of Australia, Indonesia, the Philippines, Oceania, and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

September 22, 2052 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2052 September 22 at 20:49:51.5 UTC
First Umbral External Contact2052 September 22 at 21:56:15.3 UTC
First Central Line2052 September 22 at 21:57:42.0 UTC
First Umbral Internal Contact2052 September 22 at 21:59:08.9 UTC
Ecliptic Conjunction2052 September 22 at 23:34:05.9 UTC
Greatest Eclipse2052 September 22 at 23:39:09.7 UTC
Equatorial Conjunction2052 September 22 at 23:55:26.1 UTC
Greatest Duration2052 September 23 at 00:05:29.0 UTC
Last Umbral Internal Contact2052 September 23 at 01:18:56.2 UTC
Last Central Line2052 September 23 at 01:20:26.2 UTC
Last Umbral External Contact2052 September 23 at 01:21:56.0 UTC
Last Penumbral External Contact2052 September 23 at 02:28:26.7 UTC
September 22, 2052 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.97338
Eclipse Obscuration0.94747
Gamma−0.44804
Sun Right Ascension12h02m27.0s
Sun Declination-00°15'55.5"
Sun Semi-Diameter15'56.2"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension12h01m56.4s
Moon Declination-00°39'49.3"
Moon Semi-Diameter15'17.9"
Moon Equatorial Horizontal Parallax0°56'08.8"
ΔT85.7 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of September–October 2052
September 22
Ascending node (new moon)
October 8
Descending node (full moon)
SE2052Sep22A.png Lunar eclipse chart close-2052Oct08.png
Annular solar eclipse
Solar Saros 135
Partial lunar eclipse
Lunar Saros 147

Eclipses in 2052

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 135

Inex

Triad

Solar eclipses of 2051–2054

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on August 3, 2054 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 2051 to 2054
Descending node Ascending node
SarosMapGammaSarosMapGamma
120 April 11, 2051
SE2051Apr11P.png
Partial
1.0169125 October 4, 2051
SE2051Oct04P.png
Partial
−1.2094
130 March 30, 2052
SE2052Mar30T.png
Total
0.3238135 September 22, 2052
SE2052Sep22A.png
Annular
−0.448
140 March 20, 2053
SE2053Mar20A.png
Annular
−0.4089145 September 12, 2053
SE2053Sep12T.png
Total
0.314
150 March 9, 2054
SE2054Mar09P.png
Partial
−1.1711155 September 2, 2054
SE2054Sep02P.png
Partial
1.0215

Saros 135

This eclipse is a part of Saros series 135, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 5, 1331. It contains annular eclipses from October 21, 1511 through February 24, 2305; hybrid eclipses on March 8, 2323 and March 18, 2341; and total eclipses from March 29, 2359 through May 22, 2449. The series ends at member 71 as a partial eclipse on August 17, 2593. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 16 at 10 minutes, 41 seconds on December 24, 1601, and the longest duration of totality will be produced by member 62 at 2 minutes, 27 seconds on May 12, 2431. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 28–49 occur between 1801 and 2200:
282930
SE1818May05A.png
May 5, 1818
SE1836May15A.png
May 15, 1836
SE1854May26A.png
May 26, 1854
313233
SE1872Jun06A.gif
June 6, 1872
SE1890Jun17A.png
June 17, 1890
SE1908Jun28A.png
June 28, 1908
343536
SE1926Jul09A.png
July 9, 1926
SE1944Jul20A.png
July 20, 1944
SE1962Jul31A.png
July 31, 1962
373839
SE1980Aug10A.png
August 10, 1980
SE1998Aug22A.png
August 22, 1998
SE2016Sep01A.png
September 1, 2016
404242
SE2034Sep12A.png
September 12, 2034
SE2052Sep22A.png
September 22, 2052
SE2070Oct04A.png
October 4, 2070
434445
SE2088Oct14A.png
October 14, 2088
SE2106Oct26A.png
October 26, 2106
SE2124Nov06A.png
November 6, 2124
464748
SE2142Nov17A.png
November 17, 2142
SE2160Nov27A.png
November 27, 2160
SE2178Dec09A.png
December 9, 2178
49
SE2196Dec19A.png
December 19, 2196

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 13, 2018 and July 12, 2094
July 12–13April 30–May 1February 16–17December 5–6September 22–23
117119121123125
SE2018Jul13P.png
July 13, 2018
SE2022Apr30P.png
April 30, 2022
SE2026Feb17A.png
February 17, 2026
SE2029Dec05P.png
December 5, 2029
SE2033Sep23P.png
September 23, 2033
127129131133135
SE2037Jul13T.png
July 13, 2037
SE2041Apr30T.png
April 30, 2041
SE2045Feb16A.png
February 16, 2045
SE2048Dec05T.png
December 5, 2048
SE2052Sep22A.png
September 22, 2052
137139141143145
SE2056Jul12A.png
July 12, 2056
SE2060Apr30T.png
April 30, 2060
SE2064Feb17A.png
February 17, 2064
SE2067Dec06H.png
December 6, 2067
SE2071Sep23T.png
September 23, 2071
147149151153155
SE2075Jul13A.png
July 13, 2075
SE2079May01T.png
May 1, 2079
SE2083Feb16P.png
February 16, 2083
SE2086Dec06P.png
December 6, 2086
SE2090Sep23T.png
September 23, 2090
157
SE2094Jul12P.png
July 12, 2094

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1801Sep08P.png
September 8, 1801
(Saros 112)
SE1812Aug07P.gif
August 7, 1812
(Saros 113)
SE1823Jul08P.gif
July 8, 1823
(Saros 114)
SE1834Jun07P.gif
June 7, 1834
(Saros 115)
SE1845May06An.gif
May 6, 1845
(Saros 116)
SE1856Apr05T.gif
April 5, 1856
(Saros 117)
SE1867Mar06A.gif
March 6, 1867
(Saros 118)
SE1878Feb02A.gif
February 2, 1878
(Saros 119)
SE1889Jan01T.png
January 1, 1889
(Saros 120)
SE1899Dec03A.png
December 3, 1899
(Saros 121)
SE1910Nov02P.png
November 2, 1910
(Saros 122)
SE1921Oct01T.png
October 1, 1921
(Saros 123)
SE1932Aug31T.png
August 31, 1932
(Saros 124)
SE1943Aug01A.png
August 1, 1943
(Saros 125)
SE1954Jun30T.png
June 30, 1954
(Saros 126)
SE1965May30T.png
May 30, 1965
(Saros 127)
SE1976Apr29A.png
April 29, 1976
(Saros 128)
SE1987Mar29H.png
March 29, 1987
(Saros 129)
SE1998Feb26T.png
February 26, 1998
(Saros 130)
SE2009Jan26A.png
January 26, 2009
(Saros 131)
SE2019Dec26A.png
December 26, 2019
(Saros 132)
SE2030Nov25T.png
November 25, 2030
(Saros 133)
SE2041Oct25A.png
October 25, 2041
(Saros 134)
SE2052Sep22A.png
September 22, 2052
(Saros 135)
SE2063Aug24T.png
August 24, 2063
(Saros 136)
SE2074Jul24A.png
July 24, 2074
(Saros 137)
SE2085Jun22A.png
June 22, 2085
(Saros 138)
SE2096May22T.png
May 22, 2096
(Saros 139)
SE2107Apr23A.png
April 23, 2107
(Saros 140)
SE2118Mar22A.png
March 22, 2118
(Saros 141)
SE2129Feb18T.png
February 18, 2129
(Saros 142)
SE2140Jan20A.png
January 20, 2140
(Saros 143)
SE2150Dec19A.png
December 19, 2150
(Saros 144)
SE2161Nov17T.png
November 17, 2161
(Saros 145)
SE2172Oct17H.png
October 17, 2172
(Saros 146)
Saros147 32van80 SE2183Sep16A.jpg
September 16, 2183
(Saros 147)
Saros148 31van75 SE2194Aug16T.jpg
August 16, 2194
(Saros 148)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1821Mar04T.gif
March 4, 1821
(Saros 127)
SE1850Feb12A.gif
February 12, 1850
(Saros 128)
SE1879Jan22A.gif
January 22, 1879
(Saros 129)
SE1908Jan03T.png
January 3, 1908
(Saros 130)
SE1936Dec13A.png
December 13, 1936
(Saros 131)
SE1965Nov23A.png
November 23, 1965
(Saros 132)
SE1994Nov03T.png
November 3, 1994
(Saros 133)
SE2023Oct14A.png
October 14, 2023
(Saros 134)
SE2052Sep22A.png
September 22, 2052
(Saros 135)
SE2081Sep03T.png
September 3, 2081
(Saros 136)
SE2110Aug15A.png
August 15, 2110
(Saros 137)
SE2139Jul25A.png
July 25, 2139
(Saros 138)
SE2168Jul05T.png
July 5, 2168
(Saros 139)
SE2197Jun15A.png
June 15, 2197
(Saros 140)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 30, 2052</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 30, 2052, with a magnitude of 1.0466. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 24, 2063</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 3, 2081</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, September 3, 2081, with a magnitude of 1.072. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will begin at the Atlantic Ocean, off European mainland at 07:26:49 UTC and will end at Indonesian island of Java at 10:43:03 UTC.

<span class="mw-page-title-main">Solar eclipse of September 12, 2034</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, September 12, 2034, with a magnitude of 0.9736. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.7 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of October 25, 2041</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Thursday, October 24 and Friday, October 25, 2041, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of October 3, 2043</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, October 3, 2043, with a magnitude of 0.9497. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.8 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of February 16, 2045</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 16, 2045, with a magnitude of 0.9285. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.8 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 4, 2070</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, October 4, 2070, with a magnitude of 0.9731. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.8 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Sunday, January 16 and Monday, January 17, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.25 days after perigee and 7.2 days before apogee.

<span class="mw-page-title-main">Solar eclipse of May 11, 2059</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Sunday, May 11, 2059, with a magnitude of 1.0242. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 20, 2061</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, April 20, 2061, with a magnitude of 1.0475. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 13, 2061</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 28, 2063</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063, with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of March 10, 2081</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Monday, March 10, 2081, with a magnitude of 0.9304. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References

  1. "September 22–23, 2052 Annular Solar Eclipse". timeanddate. Retrieved 15 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 15 August 2024.
  3. "Annular Solar Eclipse of 2052 Sep 22". EclipseWise.com. Retrieved 15 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 135". eclipse.gsfc.nasa.gov.