Solar eclipse of August 10, 1934

Last updated

Solar eclipse of August 10, 1934
SE1934Aug10A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.689
Magnitude 0.9436
Maximum eclipse
Duration393 s (6 min 33 s)
Coordinates 24°30′S34°36′E / 24.5°S 34.6°E / -24.5; 34.6
Max. width of band280 km (170 mi)
Times (UTC)
Greatest eclipse8:37:48
References
Saros 144 (12 of 70)
Catalog # (SE5000) 9361

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, [1] with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 1.4 days after apogee (on August 8, 1934, at 22:10 UTC), the Moon's apparent diameter was smaller. [2]

Contents

Annularity was visible from Portuguese West Africa, South West Africa, Rhodesia, Bechuanaland Protectorate, Mozambique, Transvaal, and Swaziland. A partial eclipse was visible for parts of Southern Africa, Central Africa, East Africa, and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

August 10, 1934 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1934 August 10 at 05:51:14.0 UTC
First Umbral External Contact1934 August 10 at 07:08:49.0 UTC
First Central Line1934 August 10 at 07:12:00.6 UTC
First Umbral Internal Contact1934 August 10 at 07:15:15.6 UTC
Greatest Duration1934 August 10 at 08:26:09.6 UTC
Greatest Eclipse1934 August 10 at 08:37:47.5 UTC
Ecliptic Conjunction1934 August 10 at 08:45:56.7 UTC
Equatorial Conjunction1934 August 10 at 09:12:57.7 UTC
Last Umbral Internal Contact1934 August 10 at 09:59:57.4 UTC
Last Central Line1934 August 10 at 10:03:12.2 UTC
Last Umbral External Contact1934 August 10 at 10:06:23.4 UTC
Last Penumbral External Contact1934 August 10 at 11:24:05.2 UTC
August 10, 1934 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.94361
Eclipse Obscuration0.89039
Gamma−0.68896
Sun Right Ascension09h17m53.7s
Sun Declination+15°44'27.3"
Sun Semi-Diameter15'46.8"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension09h16m52.8s
Moon Declination+15°10'20.0"
Moon Semi-Diameter14'43.8"
Moon Equatorial Horizontal Parallax0°54'03.6"
ΔT23.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of July–August 1934
July 26
Ascending node (full moon)
August 10
Descending node (new moon)
Lunar eclipse chart close-1934Jul26.png SE1934Aug10A.png
Partial lunar eclipse
Lunar Saros 118
Annular solar eclipse
Solar Saros 144

Eclipses in 1934

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 144

Inex

Triad

Solar eclipses of 1931–1935

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipses on April 18, 1931 and October 11, 1931 occur in the previous lunar year eclipse set, and the solar eclipses on January 5, 1935 (partial), June 30, 1935 (partial), and December 25, 1935 (annular) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1931 to 1935
Descending node Ascending node
SarosMapGammaSarosMapGamma
114 September 12, 1931
SE1931Sep12P.png
Partial
1.506119 March 7, 1932
SE1932Mar07A.png
Annular
−0.9673
124 August 31, 1932
SE1932Aug31T.png
Total
0.8307129 February 24, 1933
SE1933Feb24A.png
Annular
−0.2191
134 August 21, 1933
SE1933Aug21A.png
Annular
0.0869139 February 14, 1934
SE1934Feb14T.png
Total
0.4868
144 August 10, 1934
SE1934Aug10A.png
Annular
−0.689149 February 3, 1935
SE1935Feb03P.png
Partial
1.1438
154 July 30, 1935
SE1935Jul30P.png
Partial
−1.4259

Saros 144

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit. [5]

Series members 5–26 occur between 1801 and 2200:
567
SE1808May25P.png
May 25, 1808
SE1826Jun05P.png
June 5, 1826
SE1844Jun16P.png
June 16, 1844
8910
SE1862Jun27P.png
June 27, 1862
SE1880Jul07A.png
July 7, 1880
SE1898Jul18A.png
July 18, 1898
111213
SE1916Jul30A.png
July 30, 1916
SE1934Aug10A.png
August 10, 1934
SE1952Aug20A.png
August 20, 1952
141516
SE1970Aug31A.png
August 31, 1970
SE1988Sep11A.png
September 11, 1988
SE2006Sep22A.png
September 22, 2006
171819
SE2024Oct02A.png
October 2, 2024
SE2042Oct14A.png
October 14, 2042
SE2060Oct24A.png
October 24, 2060
202122
SE2078Nov04A.png
November 4, 2078
SE2096Nov15A.png
November 15, 2096
SE2114Nov27A.png
November 27, 2114
232425
SE2132Dec07A.png
December 7, 2132
SE2150Dec19A.png
December 19, 2150
SE2168Dec29A.png
December 29, 2168
26
SE2187Jan09A.png
January 9, 2187

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 16, 1866 and August 9, 1953
March 16–17January 1–3October 20–22August 9–10May 27–29
108110112114116
SE1866Mar16P.gif
March 16, 1866
SE1877Aug09P.gif
August 9, 1877
SE1881May27P.gif
May 27, 1881
118120122124126
SE1885Mar16A.gif
March 16, 1885
SE1889Jan01T.png
January 1, 1889
SE1892Oct20P.gif
October 20, 1892
SE1896Aug09T.png
August 9, 1896
SE1900May28T.png
May 28, 1900
128130132134136
SE1904Mar17A.png
March 17, 1904
SE1908Jan03T.png
January 3, 1908
SE1911Oct22A.png
October 22, 1911
SE1915Aug10A.png
August 10, 1915
SE1919May29T.png
May 29, 1919
138140142144146
SE1923Mar17A.png
March 17, 1923
SE1927Jan03A.png
January 3, 1927
SE1930Oct21T.png
October 21, 1930
SE1934Aug10A.png
August 10, 1934
SE1938May29T.png
May 29, 1938
148150152154
SE1942Mar16P.png
March 16, 1942
SE1946Jan03P.png
January 3, 1946
SE1949Oct21P.png
October 21, 1949
SE1953Aug09P.png
August 9, 1953

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2087
SE1803Aug17A.png
August 17, 1803
(Saros 132)
SE1814Jul17T.png
July 17, 1814
(Saros 133)
SE1825Jun16H.png
June 16, 1825
(Saros 134)
SE1836May15A.png
May 15, 1836
(Saros 135)
SE1847Apr15T.png
April 15, 1847
(Saros 136)
SE1858Mar15A.png
March 15, 1858
(Saros 137)
SE1869Feb11A.png
February 11, 1869
(Saros 138)
SE1880Jan11T.png
January 11, 1880
(Saros 139)
SE1890Dec12H.png
December 12, 1890
(Saros 140)
SE1901Nov11A.png
November 11, 1901
(Saros 141)
SE1912Oct10T.png
October 10, 1912
(Saros 142)
SE1923Sep10T.png
September 10, 1923
(Saros 143)
SE1934Aug10A.png
August 10, 1934
(Saros 144)
SE1945Jul09T.png
July 9, 1945
(Saros 145)
SE1956Jun08T.png
June 8, 1956
(Saros 146)
SE1967May09P.png
May 9, 1967
(Saros 147)
SE1978Apr07P.png
April 7, 1978
(Saros 148)
SE1989Mar07P.png
March 7, 1989
(Saros 149)
SE2000Feb05P.png
February 5, 2000
(Saros 150)
SE2011Jan04P.png
January 4, 2011
(Saros 151)
SE2021Dec04T.png
December 4, 2021
(Saros 152)
SE2032Nov03P.png
November 3, 2032
(Saros 153)
SE2043Oct03A.png
October 3, 2043
(Saros 154)
SE2054Sep02P.png
September 2, 2054
(Saros 155)
SE2065Aug02P.png
August 2, 2065
(Saros 156)
SE2076Jul01P.png
July 1, 2076
(Saros 157)
SE2087Jun01P.png
June 1, 2087
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1818Oct29T.png
October 29, 1818
(Saros 140)
SE1847Oct09A.png
October 9, 1847
(Saros 141)
SE1876Sep17T.png
September 17, 1876
(Saros 142)
SE1905Aug30T.png
August 30, 1905
(Saros 143)
SE1934Aug10A.png
August 10, 1934
(Saros 144)
SE1963Jul20T.png
July 20, 1963
(Saros 145)
SE1992Jun30T.png
June 30, 1992
(Saros 146)
SE2021Jun10A.png
June 10, 2021
(Saros 147)
SE2050May20H.png
May 20, 2050
(Saros 148)
SE2079May01T.png
May 1, 2079
(Saros 149)
Saros150 22van71 SE2108Apr11P.jpg
April 11, 2108
(Saros 150)
Saros151 21van72 SE2137Mar21A.jpg
March 21, 2137
(Saros 151)
Saros152 21van70 SE2166Mar02T.jpg
March 2, 2166
(Saros 152)
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195
(Saros 153)

Notes

  1. "August 10, 1934 Annular Solar Eclipse". timeanddate. Retrieved August 3, 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved August 3, 2024.
  3. "Annular Solar Eclipse of 1934 Aug 10". EclipseWise.com. Retrieved August 3, 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved October 6, 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of June 11, 2048</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, June 11, 2048, with a magnitude of 0.9441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 2032</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, May 9, 2032, with a magnitude of 0.9957. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 9, 2035</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, March 9, 2035, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 24, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973, with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from southern Mexico, southwestern Nicaragua, Costa Rica including the capital city San José, Panama, Colombia including the capital city Bogotá, southern Venezuela, Brazil, southern Guyana, southern Dutch Guiana, southern French Guiana, Portuguese Cape Verde including the capital city Praia, Mauritania including the capital city Nouakchott, Spanish Sahara, Mali, and Algeria.

<span class="mw-page-title-main">Solar eclipse of June 21, 2039</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, June 21, 2039, with a magnitude of 0.9454. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This eclipse will start only a few hours after the northern solstice and most of the path will go across areas with midnight sun. For mainland Norway, Sweden and Belarus, it will be the first central solar eclipse since June 1954.

<span class="mw-page-title-main">Solar eclipse of August 22, 1979</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 22, 1979, with a magnitude of 0.9329. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. A small annular eclipse covered only 93% of the Sun in a very broad path, 953 km wide at maximum, and lasted 6 minutes and 3 seconds. This was the second solar eclipse in 1979, the first one a total solar eclipse on February 26.

<span class="mw-page-title-main">Solar eclipse of April 18, 1977</span> Annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, April 18, 1977, with a magnitude of 0.9449. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in South West Africa, Angola, Zambia, southeastern Zaire, northern Malawi, Tanzania, Seychelles and the whole British Indian Ocean Territory.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2066</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 22, 2066, with a magnitude of 0.9435. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References