Solar eclipse of November 15, 2096

Last updated
Solar eclipse of November 15, 2096
SE2096Nov15A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.20
Magnitude 0.9237
Maximum eclipse
Duration533 s (8 min 53 s)
Coordinates 29°42′S163°18′E / 29.7°S 163.3°E / -29.7; 163.3
Max. width of band294 km (183 mi)
Times (UTC)
Greatest eclipse0:36:15
References
Saros 144 (21 of 70)
Catalog # (SE5000) 9725

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Contents

Eclipses in 2096

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 144

Inex

Triad

Solar eclipses of 2094–2098

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

The solar eclipses on January 16, 2094 (total) and July 12, 2094 (partial) occur in the previous lunar year eclipse set, and the partial solar eclipses on April 1, 2098 and September 25, 2098 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2094 to 2098
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 June 13, 2094
SE2094Jun13P.png
Partial
−1.4613124 December 7, 2094
SE2094Dec07P.png
Partial
1.1547
129 June 2, 2095
SE2095Jun02T.png
Total
−0.6396134 November 27, 2095
SE2095Nov27A.png
Annular
0.4903
139 May 22, 2096
SE2096May22T.png
Total
0.1196144 November 15, 2096
SE2096Nov15A.png
Annular
−0.20
149 May 11, 2097
SE2097May11T.png
Total
0.8516154 November 4, 2097
SE2097Nov04A.png
Annular
−0.8926
159May 1, 2098164 October 24, 2098
SE2098Oct24P.png
Partial
−1.5407

Saros 144

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit. [2]

Series members 5–26 occur between 1801 and 2200:
567
SE1808May25P.png
May 25, 1808
SE1826Jun05P.png
June 5, 1826
SE1844Jun16P.png
June 16, 1844
8910
SE1862Jun27P.png
June 27, 1862
SE1880Jul07A.png
July 7, 1880
SE1898Jul18A.png
July 18, 1898
111213
SE1916Jul30A.png
July 30, 1916
SE1934Aug10A.png
August 10, 1934
SE1952Aug20A.png
August 20, 1952
141516
SE1970Aug31A.png
August 31, 1970
SE1988Sep11A.png
September 11, 1988
SE2006Sep22A.png
September 22, 2006
171819
SE2024Oct02A.png
October 2, 2024
SE2042Oct14A.png
October 14, 2042
SE2060Oct24A.png
October 24, 2060
202122
SE2078Nov04A.png
November 4, 2078
SE2096Nov15A.png
November 15, 2096
SE2114Nov27A.png
November 27, 2114
232425
SE2132Dec07A.png
December 7, 2132
SE2150Dec19A.png
December 19, 2150
SE2168Dec29A.png
December 29, 2168
26
SE2187Jan09A.png
January 9, 2187

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 23, 2047 and November 16, 2134
June 22–23April 10–11January 27–29November 15–16September 3–5
118120122124126
SE2047Jun23P.png
June 23, 2047
SE2051Apr11P.png
April 11, 2051
SE2055Jan27P.png
January 27, 2055
SE2058Nov16P.png
November 16, 2058
SE2062Sep03P.png
September 3, 2062
128130132134136
SE2066Jun22A.png
June 22, 2066
SE2070Apr11T.png
April 11, 2070
SE2074Jan27A.png
January 27, 2074
SE2077Nov15A.png
November 15, 2077
SE2081Sep03T.png
September 3, 2081
138140142144146
SE2085Jun22A.png
June 22, 2085
SE2089Apr10A.png
April 10, 2089
SE2093Jan27T.png
January 27, 2093
SE2096Nov15A.png
November 15, 2096
SE2100Sep04T.png
September 4, 2100
148150152154156
SE2104Jun22T.png
June 22, 2104
SE2108Apr11P.gif
April 11, 2108
Saros152 18van70 SE2112Jan29T.jpg
January 29, 2112
SE2115Nov16A.png
November 16, 2115
Saros156 07van69 SE2119Sep05P.jpg
September 5, 2119
158160162164
Saros158 04van70 SE2123Jun23P.jpg
June 23, 2123
Saros164 03van80 SE2134Nov16P.jpg
November 16, 2134

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Mar04T.png
March 4, 1802
(Saros 117)
SE1813Feb01A.gif
February 1, 1813
(Saros 118)
SE1824Jan01A.gif
January 1, 1824
(Saros 119)
SE1834Nov30T.gif
November 30, 1834
(Saros 120)
SE1845Oct30H.png
October 30, 1845
(Saros 121)
SE1856Sep29A.gif
September 29, 1856
(Saros 122)
SE1867Aug29T.png
August 29, 1867
(Saros 123)
SE1878Jul29T.png
July 29, 1878
(Saros 124)
SE1889Jun28A.png
June 28, 1889
(Saros 125)
SE1900May28T.png
May 28, 1900
(Saros 126)
SE1911Apr28T.png
April 28, 1911
(Saros 127)
SE1922Mar28A.png
March 28, 1922
(Saros 128)
SE1933Feb24A.png
February 24, 1933
(Saros 129)
SE1944Jan25T.png
January 25, 1944
(Saros 130)
SE1954Dec25A.png
December 25, 1954
(Saros 131)
SE1965Nov23A.png
November 23, 1965
(Saros 132)
SE1976Oct23T.png
October 23, 1976
(Saros 133)
SE1987Sep23A.png
September 23, 1987
(Saros 134)
SE1998Aug22A.png
August 22, 1998
(Saros 135)
SE2009Jul22T.png
July 22, 2009
(Saros 136)
SE2020Jun21A.png
June 21, 2020
(Saros 137)
SE2031May21A.png
May 21, 2031
(Saros 138)
SE2042Apr20T.png
April 20, 2042
(Saros 139)
SE2053Mar20A.png
March 20, 2053
(Saros 140)
SE2064Feb17A.png
February 17, 2064
(Saros 141)
SE2075Jan16T.png
January 16, 2075
(Saros 142)
SE2085Dec16A.png
December 16, 2085
(Saros 143)
SE2096Nov15A.png
November 15, 2096
(Saros 144)
SE2107Oct16T.png
October 16, 2107
(Saros 145)
SE2118Sep15T.png
September 15, 2118
(Saros 146)
SE2129Aug15A.png
August 15, 2129
(Saros 147)
Saros148 28van75 SE2140Jul14T.jpg
July 14, 2140
(Saros 148)
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
(Saros 149)
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
(Saros 150)
Saros151 23van72 SE2173Apr12A.jpg
April 12, 2173
(Saros 151)
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184
(Saros 152)
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195
(Saros 153)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1807Jun06H.gif
June 6, 1807
(Saros 134)
SE1836May15A.gif
May 15, 1836
(Saros 135)
SE1865Apr25T.png
April 25, 1865
(Saros 136)
SE1894Apr06H.gif
April 6, 1894
(Saros 137)
SE1923Mar17A.png
March 17, 1923
(Saros 138)
SE1952Feb25T.png
February 25, 1952
(Saros 139)
SE1981Feb04A.png
February 4, 1981
(Saros 140)
SE2010Jan15A.png
January 15, 2010
(Saros 141)
SE2038Dec26T.png
December 26, 2038
(Saros 142)
SE2067Dec06H.png
December 6, 2067
(Saros 143)
SE2096Nov15A.png
November 15, 2096
(Saros 144)
SE2125Oct26T.png
October 26, 2125
(Saros 145)
SE2154Oct07T.png
October 7, 2154
(Saros 146)
Saros147 32van80 SE2183Sep16A.jpg
September 16, 2183
(Saros 147)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 22, 2006</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, September 22, 2006, with a magnitude of 0.9352. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity of this eclipse passed through Guyana, Suriname, French Guiana, the northern tip of Roraima and Amapá of Brazil, and the southern Atlantic.

<span class="mw-page-title-main">Solar eclipse of May 22, 2096</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This will be the first eclipse of saros series 139 to exceed series 136 in length of totality. The length of totality for saros 139 is increasing, while that of Saros 136 is decreasing.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Tokelau, Cook Islands, French Polynesia, Chile and Argentina. This solar eclipse occurred over 3 months after the final game of 1958 FIFA World Cup.

<span class="mw-page-title-main">Solar eclipse of August 21, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Italian Libya, Egypt, Mandatory Palestine including Jerusalem and Amman, French Mandate for Syria and the Lebanon, Iraq including Baghdad, Persia, Afghanistan, British Raj, Siam, Dutch East Indies, North Borneo, and Australia.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 25, 1963</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, January 25, 1963, with a magnitude of 0.9951. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity crossed Chile, Argentina, South Africa, southern Basutoland and Malagasy Republic. Occurring 3.7 days before perigee, the Moon's apparent diameter was larger. The moon was 374,860 km from the Earth.

<span class="mw-page-title-main">Solar eclipse of January 27, 2093</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 27, 2093, with a magnitude of 1.034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 4, 2100</span> Total solar eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, September 4, 2100, with a magnitude of 1.0402. It will be the last solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 24, 2082</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, August 24, 2082, with a magnitude of 1.0452. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 21, 2099</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 21, 2099, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.

<span class="mw-page-title-main">Solar eclipse of July 23, 2093</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, July 23, 2093, with a magnitude of 0.9463. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 20, 1944</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from British Uganda, Anglo-Egyptian Sudan, British Kenya, Ethiopia, British Somaliland, British Raj, Burma, Thailand, French Indochina, Philippines, South Seas Mandate in Japan the Territory of New Guinea.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.