Solar eclipse of October 23, 1957

Last updated
Solar eclipse of October 23, 1957
SE1957Oct23T.png
Map
Type of eclipse
NatureTotal
Gamma 1.0022
Magnitude 1.0013
Maximum eclipse
Duration-
Coordinates 71°12′S23°06′W / 71.2°S 23.1°W / -71.2; -23.1
Max. width of band- km
Times (UTC)
Greatest eclipse4:54:02
References
Saros 123 (50 of 70)
Catalog # (SE5000) 9415

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 23, 1957, with a magnitude of 1.0013. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This total solar eclipse is non-central because gamma is between 0.9972 and 1.0260.

Contents

Eclipses in 1957

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 123

Inex

Triad

Solar eclipses of 1957–1960

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

Solar eclipse series sets from 1957 to 1960
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 April 30, 1957
SE1957Apr30A.png
Annular (non-central)
0.9992123 October 23, 1957
SE1957Oct23T.png
Total (non-central)
1.0022
128 April 19, 1958
SE1958Apr19A.png
Annular
0.275133 October 12, 1958
SE1958Oct12T.png
Total
−0.2951
138 April 8, 1959
SE1959Apr08A.png
Annular
−0.4546143 October 2, 1959
SE1959Oct02T.png
Total
0.4207
148 March 27, 1960
SE1960Mar27P.png
Partial
−1.1537153 September 20, 1960
SE1960Sep20P.png
Partial
1.2057

Saros 123

This eclipse is a part of Saros series 123, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 29, 1074. It contains annular eclipses from July 2, 1182 through April 19, 1651; hybrid eclipses from April 30, 1669 through May 22, 1705; and total eclipses from June 3, 1723 through October 23, 1957. The series ends at member 70 as a partial eclipse on May 31, 2318. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 19 at 8 minutes, 7 seconds on November 9, 1398, and the longest duration of totality was produced by member 42 at 3 minutes, 27 seconds on July 27, 1813. All eclipses in this series occur at the Moon’s ascending node of orbit. [2]

Series members 42–63 occur between 1801 and 2200:
424344
SE1813Jul27T.gif
July 27, 1813
SE1831Aug07T.gif
August 7, 1831
SE1849Aug18T.gif
August 18, 1849
454647
SE1867Aug29T.png
August 29, 1867
SE1885Sep08T.png
September 8, 1885
SE1903Sep21T.png
September 21, 1903
484950
SE1921Oct01T.png
October 1, 1921
SE1939Oct12T.png
October 12, 1939
SE1957Oct23T.png
October 23, 1957
515253
SE1975Nov03P.png
November 3, 1975
SE1993Nov13P.png
November 13, 1993
SE2011Nov25P.png
November 25, 2011
545556
SE2029Dec05P.png
December 5, 2029
SE2047Dec16P.png
December 16, 2047
SE2065Dec27P.png
December 27, 2065
575859
SE2084Jan07P.png
January 7, 2084
Saros123 58van70 SE2102Jan19P.jpg
January 19, 2102
Saros123 59van70 SE2120Jan30P.jpg
January 30, 2120
606162
Saros123 60van70 SE2138Feb09P.jpg
February 9, 2138
Saros123 61van70 SE2156Feb21P.jpg
February 21, 2156
Saros123 62van70 SE2174Mar03P.jpg
March 3, 2174
63
Saros123 63van70 SE2192Mar13P.jpg
March 13, 2192

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Jan01P.gif
January 1, 1805
(Saros 109)
SE1826Oct31P.gif
October 31, 1826
(Saros 111)
SE1848Aug28P.gif
August 28, 1848
(Saros 113)
SE1859Jul29P.gif
July 29, 1859
(Saros 114)
SE1870Jun28P.gif
June 28, 1870
(Saros 115)
SE1881May27P.gif
May 27, 1881
(Saros 116)
SE1892Apr26T.png
April 26, 1892
(Saros 117)
SE1903Mar29A.png
March 29, 1903
(Saros 118)
SE1914Feb25A.png
February 25, 1914
(Saros 119)
SE1925Jan24T.png
January 24, 1925
(Saros 120)
SE1935Dec25A.png
December 25, 1935
(Saros 121)
SE1946Nov23P.png
November 23, 1946
(Saros 122)
SE1957Oct23T.png
October 23, 1957
(Saros 123)
SE1968Sep22T.png
September 22, 1968
(Saros 124)
SE1979Aug22A.png
August 22, 1979
(Saros 125)
SE1990Jul22T.png
July 22, 1990
(Saros 126)
SE2001Jun21T.png
June 21, 2001
(Saros 127)
SE2012May20A.png
May 20, 2012
(Saros 128)
SE2023Apr20H.png
April 20, 2023
(Saros 129)
SE2034Mar20T.png
March 20, 2034
(Saros 130)
SE2045Feb16A.png
February 16, 2045
(Saros 131)
SE2056Jan16A.png
January 16, 2056
(Saros 132)
SE2066Dec17T.png
December 17, 2066
(Saros 133)
SE2077Nov15A.png
November 15, 2077
(Saros 134)
SE2088Oct14A.png
October 14, 2088
(Saros 135)
SE2099Sep14T.png
September 14, 2099
(Saros 136)
SE2110Aug15A.png
August 15, 2110
(Saros 137)
SE2121Jul14A.png
July 14, 2121
(Saros 138)
SE2132Jun13T.png
June 13, 2132
(Saros 139)
SE2143May14A.png
May 14, 2143
(Saros 140)
SE2154Apr12A.png
April 12, 2154
(Saros 141)
SE2165Mar12T.png
March 12, 2165
(Saros 142)
SE2176Feb10A.png
February 10, 2176
(Saros 143)
SE2187Jan09A.png
January 9, 2187
(Saros 144)
SE2197Dec09T.png
December 9, 2197
(Saros 145)

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between January 5, 1935 and August 11, 2018
January 4–5October 23–24August 10–12May 30–31March 18–19
111113115117119
SE1935Jan05P.png
January 5, 1935
SE1942Aug12P.png
August 12, 1942
SE1946May30P.png
May 30, 1946
SE1950Mar18A.png
March 18, 1950
121123125127129
SE1954Jan05A.png
January 5, 1954
SE1957Oct23T.png
October 23, 1957
SE1961Aug11A.png
August 11, 1961
SE1965May30T.png
May 30, 1965
SE1969Mar18A.png
March 18, 1969
131133135137139
SE1973Jan04A.png
January 4, 1973
SE1976Oct23T.png
October 23, 1976
SE1980Aug10A.png
August 10, 1980
SE1984May30A.png
May 30, 1984
SE1988Mar18T.png
March 18, 1988
141143145147149
SE1992Jan04A.png
January 4, 1992
SE1995Oct24T.png
October 24, 1995
SE1999Aug11T.png
August 11, 1999
SE2003May31A.png
May 31, 2003
SE2007Mar19P.png
March 19, 2007
151153155
SE2011Jan04P.png
January 4, 2011
SE2014Oct23P.png
October 23, 2014
SE2018Aug11P.png
August 11, 2018

Notes

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 123". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of November 13, 1993</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit between Saturday, November 13 and Sunday, November 14, 1993, with a magnitude of 0.928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was visible at sunrise over parts of Australia on November 14 (Sunday), and ended at sunset over the southern tip of South America on November 13 (Saturday).

<span class="mw-page-title-main">Solar eclipse of December 17, 2066</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 17, 2066, with a magnitude of 1.0416. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 9, 1904</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, September 9, 1904, with a magnitude of 1.0709. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from German New Guinea on September 10 and Chile on September 9.

<span class="mw-page-title-main">Solar eclipse of November 3, 2032</span> Future solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, November 3, 2032, with a magnitude of 0.8554. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 10, 1980</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 10, 1980, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Tabuaeran of Kiribati, Peru, Bolivia, northern Paraguay and Brazil. Occurring 5 days before apogee, the Moon's apparent diameter was smaller. At greatest eclipse, the Sun was 79 degrees above horizon.

<span class="mw-page-title-main">Solar eclipse of March 28, 1968</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, March 28, 1968, with a magnitude of 0.899. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 11, 1961</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. A small annular eclipse covered only 94% of the Sun in a very broad path, 499 km wide at maximum, and lasted 6 minutes and 35 seconds.

<span class="mw-page-title-main">Solar eclipse of March 18, 1950</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, March 18, 1950, with a magnitude of 0.962. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 28, 2044</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 28, 2044, with a magnitude of 0.96. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 22, 2077</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 22, 2077, with a magnitude of 1.029. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 21, 2099</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 21, 2099, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.

<span class="mw-page-title-main">Solar eclipse of October 14, 2088</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2086</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 21, 1903</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Monday, September 21, 1903, with a magnitude of 1.0316. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 21, 1906</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, July 21, 1906, with a magnitude of 0.3355. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 30, 1946</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, May 30, 1946, with a magnitude of 0.8865. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 28, 1949</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, April 28, 1949, with a magnitude of 0.6092. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

References