Solar eclipse of October 3, 2005

Last updated
Solar eclipse of October 3, 2005
Ecl-ann.jpg
Annular from Madrid, Spain
SE2005Oct03A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.3306
Magnitude 0.9576
Maximum eclipse
Duration272 s (4 min 32 s)
Coordinates 12°54′N28°42′E / 12.9°N 28.7°E / 12.9; 28.7
Max. width of band162 km (101 mi)
Times (UTC)
(P1) Partial begin3:53:56
(U1) Total begin18:40:59
Greatest eclipse10:32:47
(U4) Total end1:22:35
(P4) Partial end24:27:52
References
Saros 134 (43 of 71)
Catalog # (SE5000) 9520

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, October 3, 2005, [1] [2] with a magnitude of 0.958. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 4.8 days after apogee (September 28, 2005), the Moon's apparent diameter was smaller. It was visible from a narrow corridor through the Iberian peninsula and Africa and Brazil. A partial eclipse was seen from the much broader path of the Moon's penumbra, including all of Europe, Africa and southwestern Asia. The Sun was 96% covered in a moderate annular eclipse, lasting 4 minutes and 32 seconds and covering a broad path up to 162 km wide. The next solar eclipse in Africa occurred just 6 months later.

Contents

It was the 43rd eclipse of the 134th Saros cycle, which began with a partial eclipse on June 22, 1248, and will conclude with a partial eclipse on August 6, 2510.

Visibility

The path of the eclipse began in the North Atlantic ocean at 08:41 universal time (UT). The antumbra reached Madrid, Spain at 08:56 UT, lasting four minutes and eleven seconds and 90% of the Sun was covered by the Moon. The antumbra reached Algiers at 09:05 UT, then passed through Tunisia and Libya before heading southeast through Sudan, Kenya and Somalia. The shadow then moved out over the Indian Ocean until it terminated at sunset, 12:22 UT. [3]

The maximum eclipse duration occurred in central Sudan at 10:31:42 UT, where it lasted for 4m 31s when the Sun was 71° above the horizon. [3]

The motion of the shadow was supersonic and it generated gravity waves that were detectable as disturbances in the ionosphere. These gravity waves originate in the thermosphere at an altitude of about 180 km. Because of the obscuration of solar radiation, the ionization level dropped by 70% during the eclipse. [4] [5] The eclipse caused a 1–1.4 K drop in the temperature of the ionosphere. [6]

Images

SE2005Oct03A.gif

Eclipses in 2005

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 134

Inex

Triad

Solar eclipses of 2004–2007

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [7]

Solar eclipse series sets from 2004 to 2007
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 April 19, 2004
SE2004Apr19P.png
Partial
−1.13345124 October 14, 2004
SE2004Oct14P.png
Partial
1.03481
129
Solar eclipse at sunset (2937676527) (cropped).jpg
Partial in Naiguatá, Venezuela
April 8, 2005
SE2005Apr08H.png
Hybrid
−0.34733134
Ecl-ann.jpg
Annularity in Madrid, Spain
October 3, 2005
SE2005Oct03A.png
Annular
0.33058
139
Diamondring-eclipse-March03-29-2006.jpg
Totality in Side, Turkey
March 29, 2006
SE2006Mar29T.png
Total
0.38433144
Helder da Rocha - Partial solar eclipse (by-sa).jpg
Partial in São Paulo, Brazil
September 22, 2006
SE2006Sep22A.png
Annular
−0.40624
149
Solar Eclipse (3445953058) (cropped).jpg
Partial in Jaipur, India
March 19, 2007
SE2007Mar19P.png
Partial
1.07277154
Eclipse solar 01 (1360685468) (cropped).jpg
Partial in Córdoba, Argentina
September 11, 2007
SE2007Sep11P.png
Partial
−1.12552

Saros 134

This eclipse is a part of Saros series 134, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 22, 1248. It contains total eclipses from October 9, 1428 through December 24, 1554; hybrid eclipses from January 3, 1573 through June 27, 1843; and annular eclipses from July 8, 1861 through May 21, 2384. The series ends at member 72 as a partial eclipse on August 6, 2510. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 11 at 1 minutes, 30 seconds on October 9, 1428, and the longest duration of annularity will be produced by member 52 at 10 minutes, 55 seconds on January 10, 2168. All eclipses in this series occur at the Moon’s descending node of orbit. [8]

Series members 32–53 occur between 1801 and 2200:
323334
SE1807Jun06H.png
June 6, 1807
SE1825Jun16H.png
June 16, 1825
SE1843Jun27H.png
June 27, 1843
353637
SE1861Jul08A.png
July 8, 1861
SE1879Jul19A.png
July 19, 1879
SE1897Jul29A.png
July 29, 1897
383940
SE1915Aug10A.png
August 10, 1915
SE1933Aug21A.png
August 21, 1933
SE1951Sep01A.png
September 1, 1951
414243
SE1969Sep11A.png
September 11, 1969
SE1987Sep23A.png
September 23, 1987
SE2005Oct03A.png
October 3, 2005
444546
SE2023Oct14A.png
October 14, 2023
SE2041Oct25A.png
October 25, 2041
SE2059Nov05A.png
November 5, 2059
474849
SE2077Nov15A.png
November 15, 2077
SE2095Nov27A.png
November 27, 2095
SE2113Dec08A.png
December 8, 2113
505152
SE2131Dec19A.png
December 19, 2131
SE2149Dec30A.png
December 30, 2149
SE2168Jan10A.png
January 10, 2168
53
SE2186Jan20A.png
January 20, 2186

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 22, 1971 and July 22, 2047
July 22May 9–11February 26–27December 14–15October 2–3
116118120122124
SE1971Jul22P.png
July 22, 1971
SE1975May11P.png
May 11, 1975
SE1979Feb26T.png
February 26, 1979
SE1982Dec15P.png
December 15, 1982
SE1986Oct03H.png
October 3, 1986
126128130132134
SE1990Jul22T.png
July 22, 1990
SE1994May10A.png
May 10, 1994
SE1998Feb26T.png
February 26, 1998
SE2001Dec14A.png
December 14, 2001
SE2005Oct03A.png
October 3, 2005
136138140142144
SE2009Jul22T.png
July 22, 2009
SE2013May10A.png
May 10, 2013
SE2017Feb26A.png
February 26, 2017
SE2020Dec14T.png
December 14, 2020
SE2024Oct02A.png
October 2, 2024
146148150152154
SE2028Jul22T.png
July 22, 2028
SE2032May09A.png
May 9, 2032
SE2036Feb27P.png
February 27, 2036
SE2039Dec15T.png
December 15, 2039
SE2043Oct03A.png
October 3, 2043
156
SE2047Jul22P.png
July 22, 2047

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Apr14A.gif
April 14, 1809
(Saros 116)
SE1820Mar14T.gif
March 14, 1820
(Saros 117)
SE1831Feb12A.gif
February 12, 1831
(Saros 118)
SE1842Jan11A.gif
January 11, 1842
(Saros 119)
SE1852Dec11T.gif
December 11, 1852
(Saros 120)
SE1863Nov11A.png
November 11, 1863
(Saros 121)
SE1874Oct10An.gif
October 10, 1874
(Saros 122)
SE1885Sep08T.png
September 8, 1885
(Saros 123)
SE1896Aug09T.png
August 9, 1896
(Saros 124)
SE1907Jul10A.png
July 10, 1907
(Saros 125)
SE1918Jun08T.png
June 8, 1918
(Saros 126)
SE1929May09T.png
May 9, 1929
(Saros 127)
SE1940Apr07A.png
April 7, 1940
(Saros 128)
SE1951Mar07A.png
March 7, 1951
(Saros 129)
SE1962Feb05T.png
February 5, 1962
(Saros 130)
SE1973Jan04A.png
January 4, 1973
(Saros 131)
SE1983Dec04A.png
December 4, 1983
(Saros 132)
SE1994Nov03T.png
November 3, 1994
(Saros 133)
SE2005Oct03A.png
October 3, 2005
(Saros 134)
SE2016Sep01A.png
September 1, 2016
(Saros 135)
SE2027Aug02T.png
August 2, 2027
(Saros 136)
SE2038Jul02A.png
July 2, 2038
(Saros 137)
SE2049May31A.png
May 31, 2049
(Saros 138)
SE2060Apr30T.png
April 30, 2060
(Saros 139)
SE2071Mar31A.png
March 31, 2071
(Saros 140)
SE2082Feb27A.png
February 27, 2082
(Saros 141)
SE2093Jan27T.png
January 27, 2093
(Saros 142)
SE2103Dec29A.png
December 29, 2103
(Saros 143)
SE2114Nov27A.png
November 27, 2114
(Saros 144)
SE2125Oct26T.png
October 26, 2125
(Saros 145)
SE2136Sep26T.png
September 26, 2136
(Saros 146)
Saros147 30van80 SE2147Aug26A.jpg
August 26, 2147
(Saros 147)
SE2158Jul25T.png
July 25, 2158
(Saros 148)
Saros149 29van71 SE2169Jun25T.jpg
June 25, 2169
(Saros 149)
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
(Saros 150)
SE2191Apr23A.png
April 23, 2191
(Saros 151)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1803Feb21T.png
February 21, 1803
(Saros 127)
SE1832Feb01A.gif
February 1, 1832
(Saros 128)
SE1861Jan11A.gif
January 11, 1861
(Saros 129)
SE1889Dec22T.png
December 22, 1889
(Saros 130)
SE1918Dec03A.png
December 3, 1918
(Saros 131)
SE1947Nov12A.png
November 12, 1947
(Saros 132)
SE1976Oct23T.png
October 23, 1976
(Saros 133)
SE2005Oct03A.png
October 3, 2005
(Saros 134)
SE2034Sep12A.png
September 12, 2034
(Saros 135)
SE2063Aug24T.png
August 24, 2063
(Saros 136)
SE2092Aug03A.png
August 3, 2092
(Saros 137)
SE2121Jul14A.png
July 14, 2121
(Saros 138)
SE2150Jun25T.png
June 25, 2150
(Saros 139)
SE2179Jun05A.png
June 5, 2179
(Saros 140)

Notes

  1. "From Portugal to Burundi: Thousands gather to catch glimpse of annular eclipse". The Vincennes Sun-Commercial. 2005-10-04. p. 14. Retrieved 2023-10-25 via Newspapers.com.
  2. "Rare solar eclipse gives Spain, parts of Africa a dazzling view". Arizona Daily Star. 2005-10-04. p. 2. Retrieved 2023-10-25 via Newspapers.com.
  3. 1 2 Espenak, Fred. "Annular Solar Eclipse of 2005 October 03". NASA/GSFC. Retrieved 2009-09-23.
  4. Jakowski, N.; et al. (April 2008). "Ionospheric behavior over Europe during the solar eclipse of 3 October 2005". Journal of Atmospheric and Solar-Terrestrial Physics. 70 (6): 836–853. Bibcode:2008JASTP..70..836J. doi:10.1016/j.jastp.2007.02.016.
  5. Šauli, P.; et al. (December 2007). "Acoustic–gravity waves during solar eclipses: Detection and characterization using wavelet transforms" (PDF). Journal of Atmospheric and Solar-Terrestrial Physics. 69 (17–18): 2465–2484. Bibcode:2007JASTP..69.2465S. doi:10.1016/j.jastp.2007.06.012. S2CID   54722046.
  6. Burmaka, V. P.; et al. (2007). "Tropospheric-ionospheric effects of the 3 October 2005 partial solar eclipse in Kharkiv". Kosmichna Nauka I Tekhnologiya. 13 (6): 74–86. Bibcode:2007KosNT..13f..74B. doi:10.15407/knit2007.06.074.
  7. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  8. "NASA - Catalog of Solar Eclipses of Saros 134". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of November 23, 2003</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, November 23, 2003, with a magnitude of 1.0379. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a corridor in the Antarctic region. A partial eclipse was seen from the much broader path of the Moon's penumbra, including the southern tip of South America and most of Australia.

<span class="mw-page-title-main">Solar eclipse of April 29, 2014</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, April 29, 2014, with a magnitude of 0.9868. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The center of the Moon's shadow missed the Earth's South Pole, but the partial eclipse was visible from parts of Antarctica and Australia, and an annular eclipse was visible from a small part of Antarctica.

<span class="mw-page-title-main">Solar eclipse of January 15, 2010</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, January 15, 2010, with a magnitude of 0.919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. It was the longest annular solar eclipse of the millennium, and the longest until December 23, 3043, with the length of maximum eclipse of 11 minutes, 7.8 seconds, and the longest duration of 11 minutes, 10.7 seconds. This is about 4 minutes longer than total solar eclipses could ever get.

<span class="mw-page-title-main">Solar eclipse of May 10, 2013</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit between Thursday, May 9 and Friday, May 10, 2013, with a magnitude of 0.9544. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 3, 2013</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, November 3, 2013, with a magnitude of 1.0159. It was a hybrid eclipse of the Sun with a small portion over the western Atlantic Ocean at sunrise as an annular eclipse and the rest of the path as a narrow total solar eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A hybrid solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's in sunrise and sunset, but at Greatest Eclipse the Moon's apparent diameter is larger than the Sun's.

<span class="mw-page-title-main">Solar eclipse of October 23, 2014</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 23, 2014, with a magnitude of 0.8114. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. Occurring only 5.7 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of February 15, 2018</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 15, 2018, with a magnitude of 0.5991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 22, 1998</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s ascending node of orbit on Saturday, August 22, 1998, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Indonesia, Malaysia, Papua New Guinea, Solomon Islands and Vanuatu. Occurring only 5.2 days before apogee, the Moon’s apparent diameter was 3.6% smaller than average.

<span class="mw-page-title-main">Solar eclipse of September 2, 1997</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, September 2, 1997, with a magnitude of 0.8988. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 21, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Italian Libya, Egypt, Mandatory Palestine including Jerusalem and Amman, French Mandate for Syria and the Lebanon, Iraq including Baghdad, Persia, Afghanistan, British Raj, Siam, Dutch East Indies, North Borneo, and Australia.

<span class="mw-page-title-main">Solar eclipse of October 2, 2024</span> Annular eclipse

An annular solar eclipse will occur at the Moon’s descending node of orbit on Wednesday, October 2, 2024, with a magnitude of 0.9326. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 14, 2088</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1934</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 6, 1905</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, March 6, 1905, with a magnitude of 0.9269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Heard Island and McDonald Islands, Australia, New Caledonia, and New Hebrides.

<span class="mw-page-title-main">Solar eclipse of December 3, 1918</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, December 3, 1918, with a magnitude of 0.9383. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile including the capital city Santiago, Argentina including capital Buenos Aires, southern Uruguay including capital Montevideo, northeastern tip of South West Africa and southwestern Portuguese Angola. Aconcagua, the highest mountain outside Asia, also lies in the path of annularity.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

References

Photos: