Solar eclipse of March 28, 1968

Last updated
Solar eclipse of March 28, 1968
SE1968Mar28P.png
Map
Type of eclipse
NaturePartial
Gamma −1.037
Magnitude 0.899
Maximum eclipse
Coordinates 61°00′S79°48′W / 61°S 79.8°W / -61; -79.8
Times (UTC)
Greatest eclipse23:00:30
References
Saros 119 (63 of 71)
Catalog # (SE5000) 9438

A partial solar eclipse occurred at the Moon's ascending node of orbit between Thursday, March 28 and Friday, March 29, 1968, [1] with a magnitude of 0.899. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of eastern Oceania and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

March 28, 1968 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1968 March 28 at 20:44:13.8 UTC
Equatorial Conjunction1968 March 28 at 21:53:55.7 UTC
Ecliptic Conjunction1968 March 28 at 22:48:36.8 UTC
Greatest Eclipse1968 March 28 at 23:00:30.4 UTC
Last Penumbral External Contact1968 March 29 at 01:17:17.4 UTC
March 28, 1968 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.89902
Eclipse Obscuration0.84205
Gamma−1.03704
Sun Right Ascension00h30m35.2s
Sun Declination+03°18'09.3"
Sun Semi-Diameter16'01.0"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension00h32m24.8s
Moon Declination+02°28'24.8"
Moon Semi-Diameter14'57.5"
Moon Equatorial Horizontal Parallax0°54'53.9"
ΔT38.5 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March–April 1968
March 28
Ascending node (new moon)
April 13
Descending node (full moon)
SE1968Mar28P.png Lunar eclipse chart close-1968Apr13.png
Partial solar eclipse
Solar Saros 119
Total lunar eclipse
Lunar Saros 131

Eclipses in 1968

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 119

Inex

Triad

Solar eclipses of 1968–1971

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on July 22, 1971 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1968 to 1971
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 March 28, 2968
SE1968Mar28P.png
Partial
−1.037124 September 22, 1968
SE1968Sep22T.png
Total
0.9451
129 March 18, 1969
SE1969Mar18A.png
Annular
−0.2704134 September 11, 1969
SE1969Sep11A.png
Annular
0.2201
139
C72pct (4321372614).jpg
Totality in Williamston, NC
USA
March 7, 1970
SE1970Mar07T.png
Total
0.4473144 August 31, 1970
SE1970Aug31A.png
Annular
−0.5364
149 February 25, 1971
SE1971Feb25P.png
Partial
1.1188154 August 20, 1971
SE1971Aug20P.png
Partial
−1.2659

Saros 119

This eclipse is a part of Saros series 119, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 15, 850 AD. It contains total eclipses on August 9, 994 AD and August 20, 1012; a hybrid eclipse on August 31, 1030; and annular eclipses from September 10, 1048 through March 18, 1950. The series ends at member 71 as a partial eclipse on June 24, 2112. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 10 at 32 seconds on August 20, 1012, and the longest duration of annularity was produced by member 44 at 7 minutes, 37 seconds on September 1, 1625. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

20 eclipse events between June 10, 1964 and August 21, 2036
June 10–11March 28–29January 14–16November 3August 21–22
117119121123125
SE1964Jun10P.png
June 10, 1964
SE1968Mar28P.png
March 28, 1968
SE1972Jan16A.png
January 16, 1972
SE1975Nov03P.png
November 3, 1975
SE1979Aug22A.png
August 22, 1979
127129131133135
SE1983Jun11T.png
June 11, 1983
SE1987Mar29H.png
March 29, 1987
SE1991Jan15A.png
January 15, 1991
SE1994Nov03T.png
November 3, 1994
SE1998Aug22A.png
August 22, 1998
137139141143145
SE2002Jun10A.png
June 10, 2002
SE2006Mar29T.png
March 29, 2006
SE2010Jan15A.png
January 15, 2010
SE2013Nov03H.png
November 3, 2013
SE2017Aug21T.png
August 21, 2017
147149151153155
SE2021Jun10A.png
June 10, 2021
SE2025Mar29P.png
March 29, 2025
SE2029Jan14P.png
January 14, 2029
SE2032Nov03P.png
November 3, 2032
SE2036Aug21P.png
August 21, 2036

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1837 and 2200
SE1837Apr05P.png
April 5, 1837
(Saros 107)
SE1848Mar05P.gif
March 5, 1848
(Saros 108)
SE1859Feb03P.png
February 3, 1859
(Saros 109)
SE1880Dec02P.gif
December 2, 1880
(Saros 111)
SE1913Aug31P.png
August 31, 1913
(Saros 114)
SE1924Jul31P.png
July 31, 1924
(Saros 115)
SE1935Jun30P.png
June 30, 1935
(Saros 116)
SE1946May30P.png
May 30, 1946
(Saros 117)
SE1957Apr30A.png
April 30, 1957
(Saros 118)
SE1968Mar28P.png
March 28, 1968
(Saros 119)
SE1979Feb26T.png
February 26, 1979
(Saros 120)
SE1990Jan26A.png
January 26, 1990
(Saros 121)
SE2000Dec25P.png
December 25, 2000
(Saros 122)
SE2011Nov25P.png
November 25, 2011
(Saros 123)
SE2022Oct25P.png
October 25, 2022
(Saros 124)
SE2033Sep23P.png
September 23, 2033
(Saros 125)
SE2044Aug23T.png
August 23, 2044
(Saros 126)
SE2055Jul24T.png
July 24, 2055
(Saros 127)
SE2066Jun22A.png
June 22, 2066
(Saros 128)
SE2077May22T.png
May 22, 2077
(Saros 129)
SE2088Apr21T.png
April 21, 2088
(Saros 130)
SE2099Mar21A.png
March 21, 2099
(Saros 131)
SE2110Feb18A.png
February 18, 2110
(Saros 132)
SE2121Jan19T.png
January 19, 2121
(Saros 133)
SE2131Dec19A.png
December 19, 2131
(Saros 134)
SE2142Nov17A.png
November 17, 2142
(Saros 135)
SE2153Oct17T.png
October 17, 2153
(Saros 136)
SE2164Sep16A.png
September 16, 2164
(Saros 137)
SE2175Aug16A.png
August 16, 2175
(Saros 138)
SE2186Jul16T.png
July 16, 2186
(Saros 139)
SE2197Jun15A.png
June 15, 2197
(Saros 140)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1823Jul08P.gif
July 8, 1823
(Saros 114)
SE1852Jun17P.gif
June 17, 1852
(Saros 115)
SE1881May27P.gif
May 27, 1881
(Saros 116)
SE1910May09T.png
May 9, 1910
(Saros 117)
SE1939Apr19A.png
April 19, 1939
(Saros 118)
SE1968Mar28P.png
March 28, 1968
(Saros 119)
SE1997Mar09T.png
March 9, 1997
(Saros 120)
SE2026Feb17A.png
February 17, 2026
(Saros 121)
SE2055Jan27P.png
January 27, 2055
(Saros 122)
SE2084Jan07P.png
January 7, 2084
(Saros 123)
Saros124 60van73 SE2112Dec19P.jpg
December 19, 2112
(Saros 124)
Saros125 61van73 SE2141Nov28P.jpg
November 28, 2141
(Saros 125)
Saros126 56van72 SE2170Nov08P.jpg
November 8, 2170
(Saros 126)
Saros127 68van82 SE2199Oct19P.jpg
October 19, 2199
(Saros 127)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 2, 1997</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, September 2, 1997, with a magnitude of 0.8988. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 7, 1989</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, March 7, 1989, with a magnitude of 0.8268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 19, 1985</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit between Sunday, May 19 and Monday, May 20, 1985, with a magnitude of 0.8406. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was visible near sunrise on May 20 over Japan and northeast Russia, and ending at sunset on May 19 over north Canada and Greenland.

<span class="mw-page-title-main">Solar eclipse of April 9, 1986</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986, with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 24, 2055</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 24, 2055, with a magnitude of 1.0359. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 21, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, June 21, 2058, with a magnitude of 0.126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 22, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 22, 2058, with a magnitude of 0.4141. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 11, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 11, 2062, with a magnitude of 0.9331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 5, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 5, 2065, with a magnitude of 0.9123. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 16, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, February 16, 2083, with a magnitude of 0.9433. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2086</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 1, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 1, 2098, with a magnitude of 0.7984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "March 28–29, 1968 Partial Solar Eclipse". timeanddate. Retrieved 8 August 2024.
  2. "Partial Solar Eclipse of 1968 Mar 28". EclipseWise.com. Retrieved 8 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 119". eclipse.gsfc.nasa.gov.