Solar eclipse of November 4, 2040

Last updated
Solar eclipse of November 4, 2040
SE2040Nov04P.png
Map
Type of eclipse
NaturePartial
Gamma 1.0993
Magnitude 0.8074
Maximum eclipse
Coordinates 62°12′N53°24′W / 62.2°N 53.4°W / 62.2; -53.4
Times (UTC)
Greatest eclipse19:09:02
References
Saros 124 (56 of 73)
Catalog # (SE5000) 9598

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040, [1] with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse will be visible for parts of North America, Central America, the Caribbean, and northern South America.

Images

SE2040Nov04P.gif
Animated path

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

November 4, 2040 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2040 November 04 at 17:09:37.4 UTC
Equatorial Conjunction2040 November 04 at 18:17:26.3 UTC
Ecliptic Conjunction2040 November 04 at 18:57:12.1 UTC
Greatest Eclipse2040 November 04 at 19:09:02.0 UTC
Last Penumbral External Contact2040 November 04 at 21:08:42.2 UTC
November 4, 2040 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.80742
Eclipse Obscuration0.75126
Gamma1.09928
Sun Right Ascension14h42m06.9s
Sun Declination-15°43'53.8"
Sun Semi-Diameter16'07.7"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension14h43m50.8s
Moon Declination-14°45'19.8"
Moon Semi-Diameter15'49.8"
Moon Equatorial Horizontal Parallax0°58'05.7"
ΔT79.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of November 2040
November 4
Descending node (new moon)
November 18
Ascending node (full moon)
SE2040Nov04P.png Lunar eclipse chart close-2040Nov18.png
Partial solar eclipse
Solar Saros 124
Total lunar eclipse
Lunar Saros 136

Eclipses in 2040

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 124

Inex

Triad

Solar eclipses of 2040–2043

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

Solar eclipse series sets from 2040 to 2043
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 May 11, 2040
SE2040May11P.png
Partial
−1.2529124 November 4, 2040
SE2040Nov04P.png
Partial
1.0993
129 April 30, 2041
SE2041Apr30T.png
Total
−0.4492134 October 25, 2041
SE2041Oct25A.png
Annular
0.4133
139 April 20, 2042
SE2042Apr20T.png
Total
0.2956144 October 14, 2042
SE2042Oct14A.png
Annular
−0.303
149 April 9, 2043
SE2043Apr09T.png
Total (non-central)
1.0031154 October 3, 2043
SE2043Oct03A.png
Annular (non-central)
1.0102

Saros 124

This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 through September 22, 1968, and a hybrid eclipse on October 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 43–64 occur between 1801 and 2200:
434445
SE1806Jun16T.png
June 16, 1806
SE1824Jun26T.png
June 26, 1824
SE1842Jul08T.png
July 8, 1842
464748
SE1860Jul18T.png
July 18, 1860
SE1878Jul29T.png
July 29, 1878
SE1896Aug09T.png
August 9, 1896
495051
SE1914Aug21T.png
August 21, 1914
SE1932Aug31T.png
August 31, 1932
SE1950Sep12T.png
September 12, 1950
525354
SE1968Sep22T.png
September 22, 1968
SE1986Oct03H.png
October 3, 1986
SE2004Oct14P.png
October 14, 2004
555657
SE2022Oct25P.png
October 25, 2022
SE2040Nov04P.png
November 4, 2040
SE2058Nov16P.png
November 16, 2058
585960
SE2076Nov26P.png
November 26, 2076
SE2094Dec07P.png
December 7, 2094
Saros124 60van73 SE2112Dec19P.jpg
December 19, 2112
616263
Saros124 61van73 SE2130Dec30P.jpg
December 30, 2130
Saros124 62van73 SE2149Jan09P.jpg
January 9, 2149
Saros124 63van73 SE2167Jan21P.jpg
January 21, 2167
64
Saros124 64van73 SE2185Jan31P.jpg
January 31, 2185

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 12, 2029 and November 4, 2116
June 11–12March 30–31January 16November 4–5August 23–24
118120122124126
SE2029Jun12P.png
June 12, 2029
SE2033Mar30T.png
March 30, 2033
SE2037Jan16P.png
January 16, 2037
SE2040Nov04P.png
November 4, 2040
SE2044Aug23T.png
August 23, 2044
128130132134136
SE2048Jun11A.png
June 11, 2048
SE2052Mar30T.png
March 30, 2052
SE2056Jan16A.png
January 16, 2056
SE2059Nov05A.png
November 5, 2059
SE2063Aug24T.png
August 24, 2063
138140142144146
SE2067Jun11A.png
June 11, 2067
SE2071Mar31A.png
March 31, 2071
SE2075Jan16T.png
January 16, 2075
SE2078Nov04A.png
November 4, 2078
SE2082Aug24T.png
August 24, 2082
148150152154156
SE2086Jun11T.png
June 11, 2086
SE2090Mar31P.png
March 31, 2090
SE2094Jan16T.png
January 16, 2094
SE2097Nov04A.png
November 4, 2097
Saros156 06van69 SE2101Aug24P.jpg
August 24, 2101
158160162164
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
Saros164 02van80 SE2116Nov04P.jpg
November 4, 2116

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1866 and 2200
SE1866Mar16P.gif
March 16, 1866
(Saros 108)
SE1898Dec13P.gif
December 13, 1898
(Saros 111)
SE1931Sep12P.png
September 12, 1931
(Saros 114)
SE1942Aug12P.png
August 12, 1942
(Saros 115)
SE1953Jul11P.png
July 11, 1953
(Saros 116)
SE1964Jun10P.png
June 10, 1964
(Saros 117)
SE1975May11P.png
May 11, 1975
(Saros 118)
SE1986Apr09P.png
April 9, 1986
(Saros 119)
SE1997Mar09T.png
March 9, 1997
(Saros 120)
SE2008Feb07A.png
February 7, 2008
(Saros 121)
SE2019Jan06P.png
January 6, 2019
(Saros 122)
SE2029Dec05P.png
December 5, 2029
(Saros 123)
SE2040Nov04P.png
November 4, 2040
(Saros 124)
SE2051Oct04P.png
October 4, 2051
(Saros 125)
SE2062Sep03P.png
September 3, 2062
(Saros 126)
SE2073Aug03T.png
August 3, 2073
(Saros 127)
SE2084Jul03A.png
July 3, 2084
(Saros 128)
SE2095Jun02T.png
June 2, 2095
(Saros 129)
SE2106May03T.png
May 3, 2106
(Saros 130)
SE2117Apr02A.png
April 2, 2117
(Saros 131)
SE2128Mar01A.png
March 1, 2128
(Saros 132)
SE2139Jan30T.png
January 30, 2139
(Saros 133)
SE2149Dec30A.png
December 30, 2149
(Saros 134)
SE2160Nov27A.png
November 27, 2160
(Saros 135)
SE2171Oct29T.png
October 29, 2171
(Saros 136)
SE2182Sep27A.png
September 27, 2182
(Saros 137)
SE2193Aug26A.png
August 26, 2193
(Saros 138)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Apr14A.gif
April 14, 1809
(Saros 116)
SE1838Mar25T.gif
March 25, 1838
(Saros 117)
SE1867Mar06A.gif
March 6, 1867
(Saros 118)
Saros119 59van71 SE1896Feb13A.jpg
February 13, 1896
(Saros 119)
SE1925Jan24T.png
January 24, 1925
(Saros 120)
SE1954Jan05A.png
January 5, 1954
(Saros 121)
SE1982Dec15P.png
December 15, 1982
(Saros 122)
SE2011Nov25P.png
November 25, 2011
(Saros 123)
SE2040Nov04P.png
November 4, 2040
(Saros 124)
SE2069Oct15P.png
October 15, 2069
(Saros 125)
SE2098Sep25P.png
September 25, 2098
(Saros 126)
Saros127 64van82 SE2127Sep06P.jpg
September 6, 2127
(Saros 127)
Saros128 66van73 SE2156Aug16P.jpg
August 16, 2156
(Saros 128)
Saros129 61van80 SE2185Jul26T.jpg
July 26, 2185
(Saros 129)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 11, 2051</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, April 11, 2051, with a magnitude of 0.9849. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 12, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 12, 2029, with a magnitude of 0.4576. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 3, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 16, 2037</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, January 16, 2037, with a magnitude of 0.7049. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 11, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, July 11, 1953, with a magnitude of 0.2015. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 23, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 23, 2047, with a magnitude of 0.3129. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 21, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 2, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, May 2, 2087, with a magnitude of 0.8011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 4, 2051</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, October 4, 2051, with a magnitude of 0.6024. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 9, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 2, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 18, 2091</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 21, 2088</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "November 4, 2040 Partial Solar Eclipse". timeanddate. Retrieved 14 August 2024.
  2. "Partial Solar Eclipse of 2040 Nov 04". EclipseWise.com. Retrieved 14 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 124". eclipse.gsfc.nasa.gov.