Solar eclipse of November 4, 2040 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.0993 |
Magnitude | 0.8074 |
Maximum eclipse | |
Coordinates | 62°12′N53°24′W / 62.2°N 53.4°W |
Times (UTC) | |
Greatest eclipse | 19:09:02 |
References | |
Saros | 124 (56 of 73) |
Catalog # (SE5000) | 9598 |
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040, [1] with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial eclipse will be visible for parts of North America, Central America, the Caribbean, and northern South America.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2040 November 04 at 17:09:37.4 UTC |
Equatorial Conjunction | 2040 November 04 at 18:17:26.3 UTC |
Ecliptic Conjunction | 2040 November 04 at 18:57:12.1 UTC |
Greatest Eclipse | 2040 November 04 at 19:09:02.0 UTC |
Last Penumbral External Contact | 2040 November 04 at 21:08:42.2 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.80742 |
Eclipse Obscuration | 0.75126 |
Gamma | 1.09928 |
Sun Right Ascension | 14h42m06.9s |
Sun Declination | -15°43'53.8" |
Sun Semi-Diameter | 16'07.7" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 14h43m50.8s |
Moon Declination | -14°45'19.8" |
Moon Semi-Diameter | 15'49.8" |
Moon Equatorial Horizontal Parallax | 0°58'05.7" |
ΔT | 79.0 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
November 4 Descending node (new moon) | November 18 Ascending node (full moon) |
---|---|
Partial solar eclipse Solar Saros 124 | Total lunar eclipse Lunar Saros 136 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]
Solar eclipse series sets from 2040 to 2043 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | May 11, 2040 Partial | −1.2529 | 124 | November 4, 2040 Partial | 1.0993 | |
129 | April 30, 2041 Total | −0.4492 | 134 | October 25, 2041 Annular | 0.4133 | |
139 | April 20, 2042 Total | 0.2956 | 144 | October 14, 2042 Annular | −0.303 | |
149 | April 9, 2043 Total (non-central) | 1.0031 | 154 | October 3, 2043 Annular (non-central) | 1.0102 |
This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 through September 22, 1968, and a hybrid eclipse on October 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’s descending node of orbit. [4]
Series members 43–64 occur between 1801 and 2200: | ||
---|---|---|
43 | 44 | 45 |
June 16, 1806 | June 26, 1824 | July 8, 1842 |
46 | 47 | 48 |
July 18, 1860 | July 29, 1878 | August 9, 1896 |
49 | 50 | 51 |
August 21, 1914 | August 31, 1932 | September 12, 1950 |
52 | 53 | 54 |
September 22, 1968 | October 3, 1986 | October 14, 2004 |
55 | 56 | 57 |
October 25, 2022 | November 4, 2040 | November 16, 2058 |
58 | 59 | 60 |
November 26, 2076 | December 7, 2094 | December 19, 2112 |
61 | 62 | 63 |
December 30, 2130 | January 9, 2149 | January 21, 2167 |
64 | ||
January 31, 2185 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between June 12, 2029 and November 4, 2116 | ||||
---|---|---|---|---|
June 11–12 | March 30–31 | January 16 | November 4–5 | August 23–24 |
118 | 120 | 122 | 124 | 126 |
June 12, 2029 | March 30, 2033 | January 16, 2037 | November 4, 2040 | August 23, 2044 |
128 | 130 | 132 | 134 | 136 |
June 11, 2048 | March 30, 2052 | January 16, 2056 | November 5, 2059 | August 24, 2063 |
138 | 140 | 142 | 144 | 146 |
June 11, 2067 | March 31, 2071 | January 16, 2075 | November 4, 2078 | August 24, 2082 |
148 | 150 | 152 | 154 | 156 |
June 11, 2086 | March 31, 2090 | January 16, 2094 | November 4, 2097 | August 24, 2101 |
158 | 160 | 162 | 164 | |
June 12, 2105 | November 4, 2116 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1866 and 2200 | ||||
---|---|---|---|---|
March 16, 1866 (Saros 108) | December 13, 1898 (Saros 111) | |||
September 12, 1931 (Saros 114) | August 12, 1942 (Saros 115) | July 11, 1953 (Saros 116) | June 10, 1964 (Saros 117) | |
May 11, 1975 (Saros 118) | April 9, 1986 (Saros 119) | March 9, 1997 (Saros 120) | February 7, 2008 (Saros 121) | January 6, 2019 (Saros 122) |
December 5, 2029 (Saros 123) | November 4, 2040 (Saros 124) | October 4, 2051 (Saros 125) | September 3, 2062 (Saros 126) | August 3, 2073 (Saros 127) |
July 3, 2084 (Saros 128) | June 2, 2095 (Saros 129) | May 3, 2106 (Saros 130) | April 2, 2117 (Saros 131) | March 1, 2128 (Saros 132) |
January 30, 2139 (Saros 133) | December 30, 2149 (Saros 134) | November 27, 2160 (Saros 135) | October 29, 2171 (Saros 136) | September 27, 2182 (Saros 137) |
August 26, 2193 (Saros 138) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
April 14, 1809 (Saros 116) | March 25, 1838 (Saros 117) | March 6, 1867 (Saros 118) |
February 13, 1896 (Saros 119) | January 24, 1925 (Saros 120) | January 5, 1954 (Saros 121) |
December 15, 1982 (Saros 122) | November 25, 2011 (Saros 123) | November 4, 2040 (Saros 124) |
October 15, 2069 (Saros 125) | September 25, 2098 (Saros 126) | September 6, 2127 (Saros 127) |
August 16, 2156 (Saros 128) | July 26, 2185 (Saros 129) |
A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, April 11, 2051, with a magnitude of 0.9849. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 12, 2029, with a magnitude of 0.4576. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, January 16, 2037, with a magnitude of 0.7049. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, July 11, 1953, with a magnitude of 0.2015. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 23, 2047, with a magnitude of 0.3129. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, May 2, 2087, with a magnitude of 0.8011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, October 4, 2051, with a magnitude of 0.6024. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.