Solar eclipse of May 28, 1900

Last updated
Solar eclipse of May 28, 1900
Thomas Smillie - Smithsonian Institution - Corona of the Sun during a Solar Eclipse (pd).jpg
Totality photographed in Wadesboro, North Carolina, by Thomas Smillie for the Smithsonian Solar Eclipse Expedition to capture photographic proof of the solar corona
SE1900May28T.png
Map
Type of eclipse
NatureTotal
Gamma 0.3943
Magnitude 1.0249
Maximum eclipse
Duration130 s (2 min 10 s)
Coordinates 44°48′N46°30′W / 44.8°N 46.5°W / 44.8; -46.5
Max. width of band92 km (57 mi)
Times (UTC)
Greatest eclipse14:53:56
References
Saros 126 (41 of 72)
Catalog # (SE5000) 9281

A total solar eclipse occurred at the Moon's descending node of orbit on Monday, May 28, 1900, [1] [2] with a magnitude of 1.0249. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.9 days after perigee (on May 24, 1900, at 17:30 UTC), the Moon's apparent diameter was larger. [3]

Contents

The path of totality was visible from parts of Mexico, the states of Texas, Louisiana, Mississippi, Alabama, Georgia, South Carolina, North Carolina, and Virginia in the United States, Portugal, Spain, Algeria, Tripoli, and Egypt. A partial solar eclipse was also visible for parts of North America, Central America, the Caribbean, northern South America, Europe, West Africa, and North Africa.

Viewing

In 1900 the Smithsonian Astrophysical Observatory, then based in Washington, D.C., loaded several railroad cars with scientific equipment and headed to Wadesboro, North Carolina. Scientists had determined that this small town would be the best location in North America for viewing the total solar eclipse, and the Smithsonian Solar Eclipse Expedition hoped to capture photographic images of the solar corona during the event for further study. [4] The team included Thomas Smillie, the mission's photographer. Smillie rigged cameras to seven telescopes and successfully made eight glass-plate negatives, ranging in size from eleven by fourteen inches to thirty by thirty inches. Smillie's work was considered an amazing photographic and scientific achievement. [5]

In addition to the team from the Smithsonian:

[s]cientific expeditions were mounted from some of the world’s preeminent astronomy programs including Princeton University, the University of Chicago, . . . and the British Astronomical Association. S. P. Langley and C. A. Young, two of the founders of modern astronomy, were also there.

According to Wadesboro's newspaper, the Anson Independent, the public came out in droves. Extra trains—including a special excursion train from Charlotte—brought out hundreds of people, and by the time the eclipse’s effects were beginning to be seen around 7:30 a.m., the streets were packed, and people were vying for better spots from rooftops and windows..

The same local newspaper described the total eclipse itself as lasting for less than a minute and a half, and recorded that though a large crowd was on hand, it was nearly silent during that entire time. The paper also mentioned that the drop in temperature from the shadow caused by the eclipse was quite significant. [4]

The eclipse was filmed by Nevil Maskelyne in North Carolina. [6] It was also observed from Mahelma in Algeria by John Evershed. [7]

Solar eclipse 1900May28-map.png
A map from 1900
Solar eclipse 1900May28-stars.png
The stars during total eclipse

Recording of the eclipse

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [8]

May 28, 1900 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1900 May 28 at 12:12:21.6 UTC
First Umbral External Contact1900 May 28 at 13:14:08.2 UTC
First Central Line1900 May 28 at 13:14:27.0 UTC
First Umbral Internal Contact1900 May 28 at 13:14:45.8 UTC
First Penumbral Internal Contact1900 May 28 at 14:29:28.7 UTC
Ecliptic Conjunction1900 May 28 at 14:49:42.6 UTC
Greatest Duration1900 May 28 at 14:52:29.6 UTC
Greatest Eclipse1900 May 28 at 14:53:55.5 UTC
Equatorial Conjunction1900 May 28 at 14:56:57.5 UTC
Last Penumbral Internal Contact1900 May 28 at 15:18:16.5 UTC
Last Umbral Internal Contact1900 May 28 at 16:33:06.4 UTC
Last Central Line1900 May 28 at 16:33:22.5 UTC
Last Umbral External Contact1900 May 28 at 16:33:38.7 UTC
Last Penumbral External Contact1900 May 28 at 17:35:33.8 UTC
May 28, 1900 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.02494
Eclipse Obscuration1.05051
Gamma0.39427
Sun Right Ascension04h19m46.8s
Sun Declination+21°27'14.4"
Sun Semi-Diameter15'46.6"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension04h19m39.8s
Moon Declination+21°50'10.6"
Moon Semi-Diameter15'55.8"
Moon Equatorial Horizontal Parallax0°58'27.9"
ΔT-2.2 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of May–June 1900
May 28
Descending node (new moon)
June 13
Ascending node (full moon)
SE1900May28T.png
Total solar eclipse
Solar Saros 126
Penumbral lunar eclipse
Lunar Saros 138

Eclipses in 1900

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 126

Inex

Triad

Solar eclipses of 1898–1902

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [9]

The solar eclipses on January 22, 1898 (total) and July 18, 1898 (annular) occur in the previous lunar year eclipse set, and the partial solar eclipse on April 8, 1902 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1898 to 1902
Ascending node Descending node
SarosMapGammaSarosMapGamma
111December 13, 1898
SE1898Dec13P.gif
Partial
−1.5252116June 8, 1899
SE1899Jun08P.gif
Partial
1.2089
121 December 3, 1899
SE1899Dec03A.gif
Annular
−0.9061126
Thomas Smillie - Smithsonian Institution - Corona of the Sun during a Solar Eclipse (pd).jpg
Totality in Wadesboro, North Carolina
May 28, 1900
SE1900May28T.png
Total
0.3943
131 November 22, 1900
SE1900Nov22A.gif
Annular
−0.2245136 May 18, 1901
SE1901May18T.png
Total
−0.3626
141 November 11, 1901
SE1901Nov11A.png
Annular
0.4758146 May 7, 1902
SE1902May07P.png
Partial
−1.0831
151 October 31, 1902
SE1902Oct31P.png
Partial
1.1556

Saros 126

This eclipse is a part of Saros series 126, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 10, 1179. It contains annular eclipses from June 4, 1323 through April 4, 1810; hybrid eclipses from April 14, 1828 through May 6, 1864; and total eclipses from May 17, 1882 through August 23, 2044. The series ends at member 72 as a partial eclipse on May 3, 2459. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 11 at 6 minutes, 30 seconds on June 26, 1359, and the longest duration of totality was produced by member 45 at 2 minutes, 36 seconds on July 10, 1972. All eclipses in this series occur at the Moon’s descending node of orbit. [10]

Series members 36–57 occur between 1801 and 2200:
363738
SE1810Apr04A.gif
April 4, 1810
Saros126 37van72 SE1828Apr14H.jpg
April 14, 1828
SE1846Apr25H.gif
April 25, 1846
394041
SE1864May06H.gif
May 6, 1864
SE1882May17T.png
May 17, 1882
SE1900May28T.png
May 28, 1900
424344
SE1918Jun08T.png
June 8, 1918
SE1936Jun19T.png
June 19, 1936
SE1954Jun30T.png
June 30, 1954
454647
SE1972Jul10T.png
July 10, 1972
SE1990Jul22T.png
July 22, 1990
SE2008Aug01T.png
August 1, 2008
484950
SE2026Aug12T.png
August 12, 2026
SE2044Aug23T.png
August 23, 2044
SE2062Sep03P.png
September 3, 2062
515253
SE2080Sep13P.png
September 13, 2080
SE2098Sep25P.png
September 25, 2098
Saros126 53van72 SE2116Oct06P.jpg
October 6, 2116
545556
Saros126 54van72 SE2134Oct17P.jpg
October 17, 2134
Saros126 55van72 SE2152Oct28P.jpg
October 28, 2152
Saros126 56van72 SE2170Nov08P.jpg
November 8, 2170
57
Saros126 57van72 SE2188Nov18P.jpg
November 18, 2188

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 16, 1866 and August 9, 1953
March 16–17January 1–3October 20–22August 9–10May 27–29
108110112114116
SE1866Mar16P.gif
March 16, 1866
SE1877Aug09P.gif
August 9, 1877
SE1881May27P.gif
May 27, 1881
118120122124126
SE1885Mar16A.gif
March 16, 1885
SE1889Jan01T.png
January 1, 1889
SE1892Oct20P.gif
October 20, 1892
SE1896Aug09T.png
August 9, 1896
SE1900May28T.png
May 28, 1900
128130132134136
SE1904Mar17A.png
March 17, 1904
SE1908Jan03T.png
January 3, 1908
SE1911Oct22A.png
October 22, 1911
SE1915Aug10A.png
August 10, 1915
SE1919May29T.png
May 29, 1919
138140142144146
SE1923Mar17A.png
March 17, 1923
SE1927Jan03A.png
January 3, 1927
SE1930Oct21T.png
October 21, 1930
SE1934Aug10A.png
August 10, 1934
SE1938May29T.png
May 29, 1938
148150152154
SE1942Mar16P.png
March 16, 1942
SE1946Jan03P.png
January 3, 1946
SE1949Oct21P.png
October 21, 1949
SE1953Aug09P.png
August 9, 1953

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Mar04T.png
March 4, 1802
(Saros 117)
SE1813Feb01A.gif
February 1, 1813
(Saros 118)
SE1824Jan01A.gif
January 1, 1824
(Saros 119)
SE1834Nov30T.gif
November 30, 1834
(Saros 120)
SE1845Oct30H.png
October 30, 1845
(Saros 121)
SE1856Sep29A.gif
September 29, 1856
(Saros 122)
SE1867Aug29T.png
August 29, 1867
(Saros 123)
SE1878Jul29T.png
July 29, 1878
(Saros 124)
SE1889Jun28A.png
June 28, 1889
(Saros 125)
SE1900May28T.png
May 28, 1900
(Saros 126)
SE1911Apr28T.png
April 28, 1911
(Saros 127)
SE1922Mar28A.png
March 28, 1922
(Saros 128)
SE1933Feb24A.png
February 24, 1933
(Saros 129)
SE1944Jan25T.png
January 25, 1944
(Saros 130)
SE1954Dec25A.png
December 25, 1954
(Saros 131)
SE1965Nov23A.png
November 23, 1965
(Saros 132)
SE1976Oct23T.png
October 23, 1976
(Saros 133)
SE1987Sep23A.png
September 23, 1987
(Saros 134)
SE1998Aug22A.png
August 22, 1998
(Saros 135)
SE2009Jul22T.png
July 22, 2009
(Saros 136)
SE2020Jun21A.png
June 21, 2020
(Saros 137)
SE2031May21A.png
May 21, 2031
(Saros 138)
SE2042Apr20T.png
April 20, 2042
(Saros 139)
SE2053Mar20A.png
March 20, 2053
(Saros 140)
SE2064Feb17A.png
February 17, 2064
(Saros 141)
SE2075Jan16T.png
January 16, 2075
(Saros 142)
SE2085Dec16A.png
December 16, 2085
(Saros 143)
SE2096Nov15A.png
November 15, 2096
(Saros 144)
SE2107Oct16T.png
October 16, 2107
(Saros 145)
SE2118Sep15T.png
September 15, 2118
(Saros 146)
SE2129Aug15A.png
August 15, 2129
(Saros 147)
Saros148 28van75 SE2140Jul14T.jpg
July 14, 2140
(Saros 148)
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
(Saros 149)
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
(Saros 150)
Saros151 23van72 SE2173Apr12A.jpg
April 12, 2173
(Saros 151)
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184
(Saros 152)
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195
(Saros 153)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1813Jul27T.gif
July 27, 1813
(Saros 123)
SE1842Jul08T.png
July 8, 1842
(Saros 124)
SE1871Jun18A.gif
June 18, 1871
(Saros 125)
SE1900May28T.png
May 28, 1900
(Saros 126)
SE1929May09T.png
May 9, 1929
(Saros 127)
SE1958Apr19A.png
April 19, 1958
(Saros 128)
SE1987Mar29H.png
March 29, 1987
(Saros 129)
SE2016Mar09T.png
March 9, 2016
(Saros 130)
SE2045Feb16A.png
February 16, 2045
(Saros 131)
SE2074Jan27A.png
January 27, 2074
(Saros 132)
SE2103Jan08T.png
January 8, 2103
(Saros 133)
SE2131Dec19A.png
December 19, 2131
(Saros 134)
SE2160Nov27A.png
November 27, 2160
(Saros 135)
SE2189Nov08T.png
November 8, 2189
(Saros 136)

Notes

  1. "May 28, 1900 Total Solar Eclipse". timeanddate. Retrieved 25 August 2024.
  2. "SOL'S FACE WAS VEILED. Wonderful Eclipse Observed at Many Places". Knoxville Sentinel. Knoxville, Tennessee. 1900-05-28. p. 1. Retrieved 2023-10-27 via Newspapers.com.
  3. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 25 August 2024.
  4. 1 2 "Wadesboro Prime for Viewing of 1900 Solar Eclipse". This Day in North Carolina History. N.C. Department of Natural & Cultural Resources. 28 May 2016. Retrieved 28 May 2019.
  5. Foresta, Merry. "Smillie and the 1900 Eclipse". Smithsonian Institution Archives.
  6. "‘Captivating’ – BFI shares first footage of a solar eclipse from 1900" (retrieved 30 May 2019)
  7. J. Evershed (1900-01-01). Solar Eclipse of May 28, 1900. Preliminary Report of the Expedition to the South Limit of Totality to Obtain Photographs of the Flash Spectrum in High Solar Latitudes. The Royal Society.
  8. "Total Solar Eclipse of 1900 May 28". EclipseWise.com. Retrieved 25 August 2024.
  9. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  10. "NASA - Catalog of Solar Eclipses of Saros 126". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of August 24, 2063</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, August 23 and Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 2.5 hours before perigee, the Moon's apparent diameter will be larger. Perigee did occur near the very end of this eclipse.

<span class="mw-page-title-main">Solar eclipse of February 14, 1934</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, February 13 and Wednesday, February 14, 1934, with a magnitude of 1.0321. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.6 days after perigee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of March 29, 1987</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, March 29, 1987, with a magnitude of 1.0013. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. The eclipse lasted a maximum of only 7.57 seconds. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 4.7 days after perigee and 7.8 days before apogee.

<span class="mw-page-title-main">Solar eclipse of June 8, 1918</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, June 8 and Sunday, June 9, 1918, with a magnitude of 1.0292. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 3.7 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1977</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 12, 1977, with a magnitude of 1.0269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.6 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 30, 1957</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, April 30, 1957, with a magnitude of 0.9799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.1 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of November 25, 2049</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 9, 1929</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, May 9, 1929, with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 27, 2093</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 27, 2093, with a magnitude of 1.034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 12, 2064</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 11, 2097</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 11, 2097, with a magnitude of 1.0538. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of June 2, 2095</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, June 2, 2095, with a magnitude of 1.0332. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of June 17, 1909</span> Hybrid eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Thursday, June 17 and Friday, June 18, 1909, with a magnitude of 1.0065. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 5.4 days after perigee and 7.5 days before apogee.

<span class="mw-page-title-main">Solar eclipse of December 3, 1918</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, December 3, 1918, with a magnitude of 0.9383. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 4.3 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 22, 1898</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, January 22, 1898. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

References