Solar eclipse of August 31, 1970 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.5364 |
Magnitude | 0.94 |
Maximum eclipse | |
Duration | 407 s (6 min 47 s) |
Coordinates | 20°18′S164°00′W / 20.3°S 164°W |
Max. width of band | 258 km (160 mi) |
Times (UTC) | |
Greatest eclipse | 21:55:30 |
References | |
Saros | 144 (14 of 70) |
Catalog # (SE5000) | 9443 |
An annular solar eclipse occurred at the Moon's descending node of orbit between Monday, August 31 and Tuesday, September 1, 1970, [1] with a magnitude of 0.94. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 20 hours after apogee (on August 31, 1970, at 2:00 UTC), the Moon's apparent diameter was smaller. [2]
Annularity was visible from the Territory of Papua and New Guinea (today's Papua New Guinea), Gilbert and Ellice Islands (the part that belongs to Tuvalu now) on September 1 (Tuesday), West Samoa (name changed to Samoa later) and the whole American Samoa except Swains Island on August 31 (Monday). A partial eclipse was visible for parts of Eastern Australia, Oceania, and Antarctica.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1970 August 31 at 19:00:38.3 UTC |
First Umbral External Contact | 1970 August 31 at 20:12:19.4 UTC |
First Central Line | 1970 August 31 at 20:15:18.7 UTC |
First Umbral Internal Contact | 1970 August 31 at 20:18:19.6 UTC |
Greatest Duration | 1970 August 31 at 21:42:42.2 UTC |
Greatest Eclipse | 1970 August 31 at 21:55:29.9 UTC |
Ecliptic Conjunction | 1970 August 31 at 22:01:53.6 UTC |
Equatorial Conjunction | 1970 August 31 at 22:28:51.4 UTC |
Last Umbral Internal Contact | 1970 August 31 at 23:32:19.4 UTC |
Last Central Line | 1970 August 31 at 23:35:20.4 UTC |
Last Umbral External Contact | 1970 August 31 at 23:38:19.7 UTC |
Last Penumbral External Contact | 1970 September 1 at 00:50:07.5 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.93997 |
Eclipse Obscuration | 0.88354 |
Gamma | −0.53640 |
Sun Right Ascension | 10h38m53.2s |
Sun Declination | +08°32'52.7" |
Sun Semi-Diameter | 15'50.8" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 10h37m59.0s |
Moon Declination | +08°07'17.6" |
Moon Semi-Diameter | 14'42.6" |
Moon Equatorial Horizontal Parallax | 0°53'59.0" |
ΔT | 40.8 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
August 17 Ascending node (full moon) | August 31 Descending node (new moon) |
---|---|
Partial lunar eclipse Lunar Saros 118 | Annular solar eclipse Solar Saros 144 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]
The partial solar eclipse on July 22, 1971 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 1968 to 1971 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | March 28, 1968 Partial | −1.037 | 124 | September 22, 1968 Total | 0.9451 | |
129 | March 18, 1969 Annular | −0.2704 | 134 | September 11, 1969 Annular | 0.2201 | |
139 Totality in Williamston, NC USA | March 7, 1970 Total | 0.4473 | 144 | August 31, 1970 Annular | −0.5364 | |
149 | February 25, 1971 Partial | 1.1188 | 154 | August 20, 1971 Partial | −1.2659 |
This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit. [5]
Series members 5–26 occur between 1801 and 2200: | ||
---|---|---|
5 | 6 | 7 |
May 25, 1808 | June 5, 1826 | June 16, 1844 |
8 | 9 | 10 |
June 27, 1862 | July 7, 1880 | July 18, 1898 |
11 | 12 | 13 |
July 30, 1916 | August 10, 1934 | August 20, 1952 |
14 | 15 | 16 |
August 31, 1970 | September 11, 1988 | September 22, 2006 |
17 | 18 | 19 |
October 2, 2024 | October 14, 2042 | October 24, 2060 |
20 | 21 | 22 |
November 4, 2078 | November 15, 2096 | November 27, 2114 |
23 | 24 | 25 |
December 7, 2132 | December 19, 2150 | December 29, 2168 |
26 | ||
January 9, 2187 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between April 8, 1902 and August 31, 1989 | ||||
---|---|---|---|---|
April 7–8 | January 24–25 | November 12 | August 31–September 1 | June 19–20 |
108 | 110 | 112 | 114 | 116 |
April 8, 1902 | August 31, 1913 | June 19, 1917 | ||
118 | 120 | 122 | 124 | 126 |
April 8, 1921 | January 24, 1925 | November 12, 1928 | August 31, 1932 | June 19, 1936 |
128 | 130 | 132 | 134 | 136 |
April 7, 1940 | January 25, 1944 | November 12, 1947 | September 1, 1951 | June 20, 1955 |
138 | 140 | 142 | 144 | 146 |
April 8, 1959 | January 25, 1963 | November 12, 1966 | August 31, 1970 | June 20, 1974 |
148 | 150 | 152 | 154 | |
April 7, 1978 | January 25, 1982 | November 12, 1985 | August 31, 1989 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.
Series members between 1801 and 2134 | ||||
---|---|---|---|---|
December 10, 1806 (Saros 129) | November 9, 1817 (Saros 130) | October 9, 1828 (Saros 131) | September 7, 1839 (Saros 132) | August 7, 1850 (Saros 133) |
July 8, 1861 (Saros 134) | June 6, 1872 (Saros 135) | May 6, 1883 (Saros 136) | April 6, 1894 (Saros 137) | March 6, 1905 (Saros 138) |
February 3, 1916 (Saros 139) | January 3, 1927 (Saros 140) | December 2, 1937 (Saros 141) | November 1, 1948 (Saros 142) | October 2, 1959 (Saros 143) |
August 31, 1970 (Saros 144) | July 31, 1981 (Saros 145) | June 30, 1992 (Saros 146) | May 31, 2003 (Saros 147) | April 29, 2014 (Saros 148) |
March 29, 2025 (Saros 149) | February 27, 2036 (Saros 150) | January 26, 2047 (Saros 151) | December 26, 2057 (Saros 152) | November 24, 2068 (Saros 153) |
October 24, 2079 (Saros 154) | September 23, 2090 (Saros 155) | August 24, 2101 (Saros 156) | July 23, 2112 (Saros 157) | June 23, 2123 (Saros 158) |
May 23, 2134 (Saros 159) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
December 9, 1825 (Saros 139) | November 20, 1854 (Saros 140) | October 30, 1883 (Saros 141) |
October 10, 1912 (Saros 142) | September 21, 1941 (Saros 143) | August 31, 1970 (Saros 144) |
August 11, 1999 (Saros 145) | July 22, 2028 (Saros 146) | July 1, 2057 (Saros 147) |
June 11, 2086 (Saros 148) | May 24, 2115 (Saros 149) | May 3, 2144 (Saros 150) |
April 12, 2173 (Saros 151) |
A partial solar eclipse occurred at the Moon's descending node of orbit between Wednesday, April 17 and Thursday, April 18, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, January 26, 1990, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 7.1 days after apogee, the Moon's apparent diameter was smaller.
A partial solar eclipse occurred at the Moon's ascending node of orbit between Wednesday, December 23 and Thursday, December 24, 1992, with a magnitude of 0.8422. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse will occur at the Moon’s ascending node of orbit on Tuesday, February 17, 2026, with a magnitude of 0.963. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.8 days after apogee and 7.5 days before perigee.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, August 21, 2036, with a magnitude of 0.8622. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 22, 1979, with a magnitude of 0.9329. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 15 hours before apogee, the Moon's apparent diameter was smaller.
A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, June 20, 1974, with a magnitude of 1.0592. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the view of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.4 days before perigee, the Moon's apparent diameter was larger.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, January 4, 1973, with a magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.75 days after apogee, the Moon's apparent diameter was smaller.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 20, 1952, with a magnitude of 0.942. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 1.2 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, October 3, 2043, with a magnitude of 0.9497. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.8 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.3 days before apogee, the Moon's apparent diameter will be smaller.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, October 26, 2087, with a magnitude of 0.4696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, April 28, 1949, with a magnitude of 0.6092. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit between Friday, April 17 and Saturday, April 18, 1931, with a magnitude of 0.5107. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 12, 1931, with a magnitude of 0.0471. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.