Solar eclipse of April 7, 1940 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | 0.219 |
Magnitude | 0.9394 |
Maximum eclipse | |
Duration | 450 s (7 min 30 s) |
Coordinates | 19°12′N128°30′W / 19.2°N 128.5°W |
Max. width of band | 230 km (140 mi) |
Times (UTC) | |
Greatest eclipse | 20:21:21 |
References | |
Saros | 128 (54 of 73) |
Catalog # (SE5000) | 9375 |
An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, April 7, 1940, with a magnitude of 0.9394. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Gilbert and Ellice Islands (the part now belonging to Kiribati), Mexico and the United States.
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]
The partial solar eclipse on August 12, 1942 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 1939 to 1942 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | April 19, 1939 Annular | 0.9388 | 123 | October 12, 1939 Total | −0.9737 | |
128 | April 7, 1940 Annular | 0.219 | 133 | October 1, 1940 Total | −0.2573 | |
138 | March 27, 1941 Annular | −0.5025 | 143 | September 21, 1941 Total | 0.4649 | |
148 | March 16, 1942 Partial | −1.1908 | 153 | September 10, 1942 Partial | 1.2571 |
This eclipse is a part of Saros series 128, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 29, 984 AD. It contains total eclipses from May 16, 1417 through June 18, 1471; hybrid eclipses from June 28, 1489 through July 31, 1543; and annular eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 27 at 1 minutes, 45 seconds on June 7, 1453, and the longest duration of annularity was produced by member 48 at 8 minutes, 35 seconds on February 1, 1832. All eclipses in this series occur at the Moon’s descending node of orbit. [2]
Series members 47–68 occur between 1801 and 2200: | ||
---|---|---|
47 | 48 | 49 |
January 21, 1814 | February 1, 1832 | February 12, 1850 |
50 | 51 | 52 |
February 23, 1868 | March 5, 1886 | March 17, 1904 |
53 | 54 | 55 |
March 28, 1922 | April 7, 1940 | April 19, 1958 |
56 | 57 | 58 |
April 29, 1976 | May 10, 1994 | May 20, 2012 |
59 | 60 | 61 |
June 1, 2030 | June 11, 2048 | June 22, 2066 |
62 | 63 | 64 |
July 3, 2084 | July 15, 2102 | July 25, 2120 |
65 | 66 | 67 |
August 5, 2138 | August 16, 2156 | August 27, 2174 |
68 | ||
September 6, 2192 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between April 8, 1902 and August 31, 1989 | ||||
---|---|---|---|---|
April 7–8 | January 24–25 | November 12 | August 31–September 1 | June 19–20 |
108 | 110 | 112 | 114 | 116 |
April 8, 1902 | August 31, 1913 | June 19, 1917 | ||
118 | 120 | 122 | 124 | 126 |
April 8, 1921 | January 24, 1925 | November 12, 1928 | August 31, 1932 | June 19, 1936 |
128 | 130 | 132 | 134 | 136 |
April 7, 1940 | January 25, 1944 | November 12, 1947 | September 1, 1951 | June 20, 1955 |
138 | 140 | 142 | 144 | 146 |
April 8, 1959 | January 25, 1963 | November 12, 1966 | August 31, 1970 | June 20, 1974 |
148 | 150 | 152 | 154 | |
April 7, 1978 | January 25, 1982 | November 12, 1985 | August 31, 1989 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
April 14, 1809 (Saros 116) | March 14, 1820 (Saros 117) | February 12, 1831 (Saros 118) | January 11, 1842 (Saros 119) | December 11, 1852 (Saros 120) |
November 11, 1863 (Saros 121) | October 10, 1874 (Saros 122) | September 8, 1885 (Saros 123) | August 9, 1896 (Saros 124) | July 10, 1907 (Saros 125) |
June 8, 1918 (Saros 126) | May 9, 1929 (Saros 127) | April 7, 1940 (Saros 128) | March 7, 1951 (Saros 129) | February 5, 1962 (Saros 130) |
January 4, 1973 (Saros 131) | December 4, 1983 (Saros 132) | November 3, 1994 (Saros 133) | October 3, 2005 (Saros 134) | September 1, 2016 (Saros 135) |
August 2, 2027 (Saros 136) | July 2, 2038 (Saros 137) | May 31, 2049 (Saros 138) | April 30, 2060 (Saros 139) | March 31, 2071 (Saros 140) |
February 27, 2082 (Saros 141) | January 27, 2093 (Saros 142) | December 29, 2103 (Saros 143) | November 27, 2114 (Saros 144) | October 26, 2125 (Saros 145) |
September 26, 2136 (Saros 146) | August 26, 2147 (Saros 147) | July 25, 2158 (Saros 148) | June 25, 2169 (Saros 149) | May 24, 2180 (Saros 150) |
April 23, 2191 (Saros 151) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
June 26, 1824 (Saros 124) | June 6, 1853 (Saros 125) | May 17, 1882 (Saros 126) |
April 28, 1911 (Saros 127) | April 7, 1940 (Saros 128) | March 18, 1969 (Saros 129) |
February 26, 1998 (Saros 130) | February 6, 2027 (Saros 131) | January 16, 2056 (Saros 132) |
December 27, 2084 (Saros 133) | December 8, 2113 (Saros 134) | November 17, 2142 (Saros 135) |
October 29, 2171 (Saros 136) | October 9, 2200 (Saros 137) |
An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Italian Libya, Egypt, Mandatory Palestine including Jerusalem and Amman, French Mandate for Syria and the Lebanon, Iraq including Baghdad, Persia, Afghanistan, British Raj, Siam, Dutch East Indies, North Borneo, and Australia.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, May 21, 2031, with a magnitude of 0.9589. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 3.8 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973, with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from southern Mexico, southwestern Nicaragua, Costa Rica including the capital city San José, Panama, Colombia including the capital city Bogotá, southern Venezuela, Brazil, southern Guyana, southern Dutch Guiana, southern French Guiana, Portuguese Cape Verde including the capital city Praia, Mauritania including the capital city Nouakchott, Spanish Sahara, Mali, and Algeria.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, January 4, 1973, with a magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile and Argentina.
An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, September 11, 1969, with a magnitude of 0.969. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Pacific Ocean, Peru, Bolivia and the southwestern tip of Brazilian state Mato Grosso. Places west of the International Date Line witnessed the eclipse on Friday, September 12, 1969.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, March 18, 1969, with a magnitude of 0.9954. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from part of Indonesia, and two atolls in the Trust Territory of the Pacific Islands which belongs to the Federated States of Micronesia now.
An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 14, 2042, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.
An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from British Uganda, Anglo-Egyptian Sudan, British Kenya, Ethiopia, British Somaliland, British Raj, Burma, Thailand, French Indochina, Philippines, South Seas Mandate in Japan the Territory of New Guinea.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, July 9, 1926, with a magnitude of 0.968. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the islands of Pulo Anna and Merir in Japan's South Seas Mandate and Wake Island on July 10 (Saturday), and Midway Atoll on July 9 (Friday).