Solar eclipse of May 30, 1965 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | −0.4225 |
Magnitude | 1.0544 |
Maximum eclipse | |
Duration | 315 s (5 min 15 s) |
Coordinates | 2°30′S133°48′W / 2.5°S 133.8°W |
Max. width of band | 198 km (123 mi) |
Times (UTC) | |
Greatest eclipse | 21:17:31 |
References | |
Saros | 127 (55 of 82) |
Catalog # (SE5000) | 9432 |
A total solar eclipse occurred at the Moon's ascending node of orbit between Sunday, May 30 and Monday, May 31, 1965, [1] with a magnitude of 1.0544. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days before perigee (on June 1, 1965, at 19:20 UTC), the Moon's apparent diameter was larger. [2]
As most of the eclipse's path was over open ocean, a prolonged observation was made by a jet transport; flying parallel to the path of the eclipse at 587 mph (945 km/h), this gave scientists what was at the time the "longest probe in man's history into the conditions of a solar eclipse", for nearly ten minutes. The expedition involved scientists from NASA, Belgium, Italy, the Netherlands, and Switzerland; in total, 30 researchers and 13 separate research projects were represented on the plane. [3] [4] [5] The plane, operated by NASA, took off from Hilo, Hawaii, and met up with the path of the eclipse approximately 1,000 mi (1,600 km) south of there. [6] While mostly invisible from land, some ground-based observers in an 85-mile-wide strip of northern New Zealand were able to clearly view the event. [6]
Totality was visible from northwestern Northland Region in New Zealand on May 31 (Monday), and Manuae in Cook Islands, Manuae and Motu One in French Polynesia, and Peru on May 30 (Sunday). A partial eclipse was visible for parts of Oceania, Mexico, Central America, the Caribbean, and western South America.
New Zealand, Australia, the United Kingdom, the United States, Germany, Japan and the Soviet Union sent observation teams to Manuae, Cook Islands to observe the total eclipse. The New Zealand government deployed ships to transport passengers from Rarotonga, the island where the national capital Avarua is located, to Manuae. The atoll has a total area of 1,524 hectares, and only a few copra workers lived there permanently. During the totality, there were 85 scientists as well as their assistants on the atoll. The sun was covered by clouds during the eclipse and observations were not successful. [7] In the northern part of New Zealand's North Island, the total eclipse occurred shortly after sunrise on May 31 local time. Although there were some clouds in the sky on the previous evening, the eclipse was seen successfully. In addition, scientists also launched rockets to obtain observation data from high altitude. [8]
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [9]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1965 May 30 at 18:42:27.7 UTC |
First Umbral External Contact | 1965 May 30 at 19:41:19.6 UTC |
First Central Line | 1965 May 30 at 19:42:27.9 UTC |
First Umbral Internal Contact | 1965 May 30 at 19:43:36.4 UTC |
First Penumbral Internal Contact | 1965 May 30 at 20:58:09.1 UTC |
Equatorial Conjunction | 1965 May 30 at 21:06:07.2 UTC |
Ecliptic Conjunction | 1965 May 30 at 21:13:07.3 UTC |
Greatest Eclipse | 1965 May 30 at 21:17:30.7 UTC |
Greatest Duration | 1965 May 30 at 21:22:56.7 UTC |
Last Penumbral Internal Contact | 1965 May 30 at 21:37:09.3 UTC |
Last Umbral Internal Contact | 1965 May 30 at 22:51:30.3 UTC |
Last Central Line | 1965 May 30 at 22:52:40.6 UTC |
Last Umbral External Contact | 1965 May 30 at 22:53:50.7 UTC |
Last Penumbral External Contact | 1965 May 30 at 23:52:34.5 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 1.05440 |
Eclipse Obscuration | 1.11175 |
Gamma | −0.42251 |
Sun Right Ascension | 04h30m07.4s |
Sun Declination | +21°50'16.2" |
Sun Semi-Diameter | 15'46.4" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 04h30m34.5s |
Moon Declination | +21°25'43.5" |
Moon Semi-Diameter | 16'22.9" |
Moon Equatorial Horizontal Parallax | 1°00'07.2" |
ΔT | 36.1 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
May 30 Ascending node (new moon) | June 14 Descending node (full moon) |
---|---|
Total solar eclipse Solar Saros 127 | Partial lunar eclipse Lunar Saros 139 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [10]
The partial solar eclipses on January 14, 1964 and July 9, 1964 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 1964 to 1967 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
117 | June 10, 1964 Partial | −1.1393 | 122 | December 4, 1964 Partial | 1.1193 | |
127 | May 30, 1965 Total | −0.4225 | 132 | November 23, 1965 Annular | 0.3906 | |
137 | May 20, 1966 Annular | 0.3467 | 142 | November 12, 1966 Total | −0.33 | |
147 | May 9, 1967 Partial | 1.1422 | 152 | November 2, 1967 Total (non-central) | 1.0007 |
This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 82 events. The series started with a partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular or hybrid eclipses in this set. The series ends at member 82 as a partial eclipse on March 21, 2452. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 31 at 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occur at the Moon’s ascending node of orbit. [11]
Series members 46–68 occur between 1801 and 2200: | ||
---|---|---|
46 | 47 | 48 |
February 21, 1803 | March 4, 1821 | March 15, 1839 |
49 | 50 | 51 |
March 25, 1857 | April 6, 1875 | April 16, 1893 |
52 | 53 | 54 |
April 28, 1911 | May 9, 1929 | May 20, 1947 |
55 | 56 | 57 |
May 30, 1965 | June 11, 1983 | June 21, 2001 |
58 | 59 | 60 |
July 2, 2019 | July 13, 2037 | July 24, 2055 |
61 | 62 | 63 |
August 3, 2073 | August 15, 2091 | August 26, 2109 |
64 | 65 | 66 |
September 6, 2127 | September 16, 2145 | September 28, 2163 |
67 | 68 | |
October 8, 2181 | October 19, 2199 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
22 eclipse events between January 5, 1935 and August 11, 2018 | ||||
---|---|---|---|---|
January 4–5 | October 23–24 | August 10–12 | May 30–31 | March 18–19 |
111 | 113 | 115 | 117 | 119 |
January 5, 1935 | August 12, 1942 | May 30, 1946 | March 18, 1950 | |
121 | 123 | 125 | 127 | 129 |
January 5, 1954 | October 23, 1957 | August 11, 1961 | May 30, 1965 | March 18, 1969 |
131 | 133 | 135 | 137 | 139 |
January 4, 1973 | October 23, 1976 | August 10, 1980 | May 30, 1984 | March 18, 1988 |
141 | 143 | 145 | 147 | 149 |
January 4, 1992 | October 24, 1995 | August 11, 1999 | May 31, 2003 | March 19, 2007 |
151 | 153 | 155 | ||
January 4, 2011 | October 23, 2014 | August 11, 2018 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
September 8, 1801 (Saros 112) | August 7, 1812 (Saros 113) | July 8, 1823 (Saros 114) | June 7, 1834 (Saros 115) | May 6, 1845 (Saros 116) |
April 5, 1856 (Saros 117) | March 6, 1867 (Saros 118) | February 2, 1878 (Saros 119) | January 1, 1889 (Saros 120) | December 3, 1899 (Saros 121) |
November 2, 1910 (Saros 122) | October 1, 1921 (Saros 123) | August 31, 1932 (Saros 124) | August 1, 1943 (Saros 125) | June 30, 1954 (Saros 126) |
May 30, 1965 (Saros 127) | April 29, 1976 (Saros 128) | March 29, 1987 (Saros 129) | February 26, 1998 (Saros 130) | January 26, 2009 (Saros 131) |
December 26, 2019 (Saros 132) | November 25, 2030 (Saros 133) | October 25, 2041 (Saros 134) | September 22, 2052 (Saros 135) | August 24, 2063 (Saros 136) |
July 24, 2074 (Saros 137) | June 22, 2085 (Saros 138) | May 22, 2096 (Saros 139) | April 23, 2107 (Saros 140) | March 22, 2118 (Saros 141) |
February 18, 2129 (Saros 142) | January 20, 2140 (Saros 143) | December 19, 2150 (Saros 144) | November 17, 2161 (Saros 145) | October 17, 2172 (Saros 146) |
September 16, 2183 (Saros 147) | August 16, 2194 (Saros 148) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
September 7, 1820 (Saros 122) | August 18, 1849 (Saros 123) | July 29, 1878 (Saros 124) |
July 10, 1907 (Saros 125) | June 19, 1936 (Saros 126) | May 30, 1965 (Saros 127) |
May 10, 1994 (Saros 128) | April 20, 2023 (Saros 129) | March 30, 2052 (Saros 130) |
March 10, 2081 (Saros 131) | February 18, 2110 (Saros 132) | January 30, 2139 (Saros 133) |
January 10, 2168 (Saros 134) | December 19, 2196 (Saros 135) |
A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 30, 2052, with a magnitude of 1.0466. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will cross central Mexico and the southeastern states of the United States. Almost all of North America and the northern edge of South America will see a partial eclipse. It will be the 2nd total eclipse visible from the Florida Panhandle and southwest Georgia in 6.6 years. It will be the first total solar eclipse visible from Solar Saros 130 in 223 synodic months. It will be the last total solar eclipse visible in the United States until May 11, 2078.
A total solar eclipse will occur at the Moon's descending node of orbit on Monday, March 20, 2034, with a magnitude of 1.0458. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in 13 countries: from east to west, Benin, Nigeria, Cameroon, Chad, Sudan, Egypt, Saudi Arabia, Kuwait, Iran, Afghanistan, Pakistan, India, and China. The eclipse passes through Iran only a few hours before the vernal Spring equinox, marking the beginning of the Persian New Year.
A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, September 3, 2081, with a magnitude of 1.072. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will begin at the Atlantic Ocean, off European mainland at 07:26:49 UTC and will end at Indonesian island of Java at 10:43:03 UTC.
A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This will be the first eclipse of saros series 139 to exceed series 136 in length of totality. The length of totality for saros 139 is increasing, while that of Saros 136 is decreasing.
A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, March 18, 1988, with a magnitude of 1.0464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia and southern Philippines.
A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, April 17, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, December 5, 2048, with a magnitude of 1.044. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight and turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region spanning thousands of kilometres.
A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 13, 2037, with a magnitude of 1.0413. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will pass through the centre of Brisbane and the Gold Coast, as well as Geraldton, Western Australia.
A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, December 15, 2039, with a magnitude of 1.0356. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, June 20, 1974, with a magnitude of 1.0592. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the view of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.4 days before perigee, the Moon's apparent diameter was larger.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, May 2, 2087, with a magnitude of 0.8011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, September 4, 2100, with a magnitude of 1.0402. It will be the last solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 11, 2062, with a magnitude of 0.9331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.