Solar eclipse of May 22, 2058 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | −1.3194 |
Magnitude | 0.4141 |
Maximum eclipse | |
Coordinates | 63°30′S61°06′E / 63.5°S 61.1°E |
Times (UTC) | |
Greatest eclipse | 10:39:25 |
References | |
Saros | 119 (68 of 71) |
Catalog # (SE5000) | 9638 |
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 22, 2058, [1] with a magnitude of 0.4141. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
The partial solar eclipse will be visible for parts of Antarctica, southern South Africa, and southern Madagascar.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2058 May 22 at 09:05:01.4 UTC |
Equatorial Conjunction | 2058 May 22 at 09:52:44.5 UTC |
Ecliptic Conjunction | 2058 May 22 at 10:24:51.8 UTC |
Greatest Eclipse | 2058 May 22 at 10:39:25.5 UTC |
Last Penumbral External Contact | 2058 May 22 at 12:14:13.5 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.41409 |
Eclipse Obscuration | 0.29549 |
Gamma | −1.31939 |
Sun Right Ascension | 03h58m00.8s |
Sun Declination | +20°28'40.9" |
Sun Semi-Diameter | 15'48.1" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 03h59m32.2s |
Moon Declination | +19°18'44.2" |
Moon Semi-Diameter | 15'09.0" |
Moon Equatorial Horizontal Parallax | 0°55'36.1" |
ΔT | 89.3 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
May 22 Ascending node (new moon) | June 6 Descending node (full moon) | June 21 Ascending node (new moon) |
---|---|---|
Partial solar eclipse Solar Saros 119 | Total lunar eclipse Lunar Saros 131 | Partial solar eclipse Solar Saros 157 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]
The partial solar eclipse on June 21, 2058 occurs in the previous lunar year eclipse set.
Solar eclipse series sets from 2058 to 2061 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
119 | May 22, 2058 Partial | −1.3194 | 124 | November 16, 2058 Partial | 1.1224 | |
129 | May 11, 2059 Total | −0.508 | 134 | November 5, 2059 Annular | 0.4454 | |
139 | April 30, 2060 Total | 0.2422 | 144 | October 24, 2060 Annular | −0.2625 | |
149 | April 20, 2061 Total | 0.9578 | 154 | October 13, 2061 Annular | −0.9639 |
This eclipse is a part of Saros series 119, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 15, 850 AD. It contains total eclipses on August 9, 994 AD and August 20, 1012; a hybrid eclipse on August 31, 1030; and annular eclipses from September 10, 1048 through March 18, 1950. The series ends at member 71 as a partial eclipse on June 24, 2112. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 10 at 32 seconds on August 20, 1012, and the longest duration of annularity was produced by member 44 at 7 minutes, 37 seconds on September 1, 1625. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]
Series members 54–71 occur between 1801 and 2112: | ||
---|---|---|
54 | 55 | 56 |
December 21, 1805 | January 1, 1824 | January 11, 1842 |
57 | 58 | 59 |
January 23, 1860 | February 2, 1878 | February 13, 1896 |
60 | 61 | 62 |
February 25, 1914 | March 7, 1932 | March 18, 1950 |
63 | 64 | 65 |
March 28, 1968 | April 9, 1986 | April 19, 2004 |
66 | 67 | 68 |
April 30, 2022 | May 11, 2040 | May 22, 2058 |
69 | 70 | 71 |
June 1, 2076 | June 13, 2094 | June 24, 2112 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
23 eclipse events between August 3, 2054 and October 16, 2145 | ||||
---|---|---|---|---|
August 3–4 | May 22–24 | March 10–11 | December 27–29 | October 14–16 |
117 | 119 | 121 | 123 | 125 |
August 3, 2054 | May 22, 2058 | March 11, 2062 | December 27, 2065 | October 15, 2069 |
127 | 129 | 131 | 133 | 135 |
August 3, 2073 | May 22, 2077 | March 10, 2081 | December 27, 2084 | October 14, 2088 |
137 | 139 | 141 | 143 | 145 |
August 3, 2092 | May 22, 2096 | March 10, 2100 | December 29, 2103 | October 16, 2107 |
147 | 149 | 151 | 153 | 155 |
August 4, 2111 | May 24, 2115 | March 11, 2119 | December 28, 2122 | October 16, 2126 |
157 | 159 | 161 | 163 | 165 |
August 4, 2130 | May 23, 2134 | October 16, 2145 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 2036 and 2200 | ||||
---|---|---|---|---|
July 23, 2036 (Saros 117) | June 23, 2047 (Saros 118) | May 22, 2058 (Saros 119) | April 21, 2069 (Saros 120) | March 21, 2080 (Saros 121) |
February 18, 2091 (Saros 122) | January 19, 2102 (Saros 123) | December 19, 2112 (Saros 124) | November 18, 2123 (Saros 125) | October 17, 2134 (Saros 126) |
September 16, 2145 (Saros 127) | August 16, 2156 (Saros 128) | July 16, 2167 (Saros 129) | June 16, 2178 (Saros 130) | May 15, 2189 (Saros 131) |
April 14, 2200 (Saros 132) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
October 31, 1826 (Saros 111) | ||
August 31, 1913 (Saros 114) | August 12, 1942 (Saros 115) | July 22, 1971 (Saros 116) |
July 1, 2000 (Saros 117) | June 12, 2029 (Saros 118) | May 22, 2058 (Saros 119) |
May 2, 2087 (Saros 120) | April 13, 2116 (Saros 121) | March 23, 2145 (Saros 122) |
March 3, 2174 (Saros 123) |
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 22, 1971, with a magnitude of 0.0689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, May 2, 2087, with a magnitude of 0.8011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit between Thursday, June 20 and Friday, June 21, 2058, with a magnitude of 0.126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, August 3, 2054, with a magnitude of 0.0655. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 27, 2055, with a magnitude of 0.6932. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, May 20, 2069, with a magnitude of 0.0879. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 15, 2069, with a magnitude of 0.5298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, June 1, 2076, with a magnitude of 0.2897. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, November 26, 2076, with a magnitude of 0.7315. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 12, 2094, with a magnitude of 0.4224. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, October 26, 2087, with a magnitude of 0.4696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.