Solar eclipse of May 22, 2058

Last updated
Solar eclipse of May 22, 2058
SE2058May22P.png
Map
Type of eclipse
NaturePartial
Gamma −1.3194
Magnitude 0.4141
Maximum eclipse
Coordinates 63°30′S61°06′E / 63.5°S 61.1°E / -63.5; 61.1
Times (UTC)
Greatest eclipse10:39:25
References
Saros 119 (68 of 71)
Catalog # (SE5000) 9638

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 22, 2058, [1] with a magnitude of 0.4141. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

The partial solar eclipse will be visible for parts of Antarctica, southern South Africa, and southern Madagascar.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

May 22, 2058 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2058 May 22 at 09:05:01.4 UTC
Equatorial Conjunction2058 May 22 at 09:52:44.5 UTC
Ecliptic Conjunction2058 May 22 at 10:24:51.8 UTC
Greatest Eclipse2058 May 22 at 10:39:25.5 UTC
Last Penumbral External Contact2058 May 22 at 12:14:13.5 UTC
May 22, 2058 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.41409
Eclipse Obscuration0.29549
Gamma−1.31939
Sun Right Ascension03h58m00.8s
Sun Declination+20°28'40.9"
Sun Semi-Diameter15'48.1"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension03h59m32.2s
Moon Declination+19°18'44.2"
Moon Semi-Diameter15'09.0"
Moon Equatorial Horizontal Parallax0°55'36.1"
ΔT89.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of May–June 2058
May 22
Ascending node (new moon)
June 6
Descending node (full moon)
June 21
Ascending node (new moon)
SE2058May22P.png Lunar eclipse chart close-2058Jun06.png SE2058Jun21P.png
Partial solar eclipse
Solar Saros 119
Total lunar eclipse
Lunar Saros 131
Partial solar eclipse
Solar Saros 157

Eclipses in 2058

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 119

Inex

Triad

Solar eclipses of 2058–2061

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on June 21, 2058 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2058 to 2061
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 May 22, 2058
SE2058May22P.png
Partial
−1.3194124 November 16, 2058
SE2058Nov16P.png
Partial
1.1224
129 May 11, 2059
SE2059May11T.png
Total
−0.508134 November 5, 2059
SE2059Nov05A.png
Annular
0.4454
139 April 30, 2060
SE2060Apr30T.png
Total
0.2422144 October 24, 2060
SE2060Oct24A.png
Annular
−0.2625
149 April 20, 2061
SE2061Apr20T.png
Total
0.9578154 October 13, 2061
SE2061Oct13A.png
Annular
−0.9639

Saros 119

This eclipse is a part of Saros series 119, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 15, 850 AD. It contains total eclipses on August 9, 994 AD and August 20, 1012; a hybrid eclipse on August 31, 1030; and annular eclipses from September 10, 1048 through March 18, 1950. The series ends at member 71 as a partial eclipse on June 24, 2112. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 10 at 32 seconds on August 20, 1012, and the longest duration of annularity was produced by member 44 at 7 minutes, 37 seconds on September 1, 1625. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between August 3, 2054 and October 16, 2145
August 3–4May 22–24March 10–11December 27–29October 14–16
117119121123125
SE2054Aug03P.png
August 3, 2054
SE2058May22P.png
May 22, 2058
SE2062Mar11P.png
March 11, 2062
SE2065Dec27P.png
December 27, 2065
SE2069Oct15P.png
October 15, 2069
127129131133135
SE2073Aug03T.png
August 3, 2073
SE2077May22T.png
May 22, 2077
SE2081Mar10A.png
March 10, 2081
SE2084Dec27T.png
December 27, 2084
SE2088Oct14A.png
October 14, 2088
137139141143145
SE2092Aug03A.png
August 3, 2092
SE2096May22T.png
May 22, 2096
SE2100Mar10A.png
March 10, 2100
SE2103Dec29A.png
December 29, 2103
SE2107Oct16T.png
October 16, 2107
147149151153155
SE2111Aug04A.png
August 4, 2111
SE2115May24T.png
May 24, 2115
Saros151 20van72 SE2119Mar11A.jpg
March 11, 2119
Saros153 15van70 SE2122Dec28A.jpg
December 28, 2122
SE2126Oct16T.png
October 16, 2126
157159161163165
Saros157 05van70 SE2130Aug04P.jpg
August 4, 2130
Saros159 01van70 SE2134May23P.jpg
May 23, 2134
Saros165 01van72 SE2145Oct16P.jpg
October 16, 2145

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 2036 and 2200
SE2036Jul23P.png
July 23, 2036
(Saros 117)
SE2047Jun23P.png
June 23, 2047
(Saros 118)
SE2058May22P.png
May 22, 2058
(Saros 119)
SE2069Apr21P.png
April 21, 2069
(Saros 120)
SE2080Mar21P.png
March 21, 2080
(Saros 121)
SE2091Feb18P.png
February 18, 2091
(Saros 122)
Saros123 58van70 SE2102Jan19P.jpg
January 19, 2102
(Saros 123)
Saros124 60van73 SE2112Dec19P.jpg
December 19, 2112
(Saros 124)
Saros125 60van73 SE2123Nov18P.jpg
November 18, 2123
(Saros 125)
Saros126 54van72 SE2134Oct17P.jpg
October 17, 2134
(Saros 126)
Saros127 65van82 SE2145Sep16P.jpg
September 16, 2145
(Saros 127)
Saros128 66van73 SE2156Aug16P.jpg
August 16, 2156
(Saros 128)
Saros129 60van80 SE2167Jul16T.jpg
July 16, 2167
(Saros 129)
SE2178Jun16T.png
June 16, 2178
(Saros 130)
SE2189May15A.png
May 15, 2189
(Saros 131)
SE2200Apr14T.png
April 14, 2200
(Saros 132)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1826Oct31P.gif
October 31, 1826
(Saros 111)
SE1913Aug31P.png
August 31, 1913
(Saros 114)
SE1942Aug12P.png
August 12, 1942
(Saros 115)
SE1971Jul22P.png
July 22, 1971
(Saros 116)
SE2000Jul01P.png
July 1, 2000
(Saros 117)
SE2029Jun12P.png
June 12, 2029
(Saros 118)
SE2058May22P.png
May 22, 2058
(Saros 119)
SE2087May02P.png
May 2, 2087
(Saros 120)
Saros121 66van71 SE2116Apr13P.jpg
April 13, 2116
(Saros 121)
Saros122 65van70 SE2145Mar23P.jpg
March 23, 2145
(Saros 122)
Saros123 62van70 SE2174Mar03P.jpg
March 3, 2174
(Saros 123)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 3, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 1971</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 22, 1971, with a magnitude of 0.0689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 21, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 2, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, May 2, 2087, with a magnitude of 0.8011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 21, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit between Thursday, June 20 and Friday, June 21, 2058, with a magnitude of 0.126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 3, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, August 3, 2054, with a magnitude of 0.0655. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 27, 2055</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 27, 2055, with a magnitude of 0.6932. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 2, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 20, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, May 20, 2069, with a magnitude of 0.0879. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 3, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 15, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 15, 2069, with a magnitude of 0.5298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, June 1, 2076, with a magnitude of 0.2897. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 26, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, November 26, 2076, with a magnitude of 0.7315. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 12, 2094</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 12, 2094, with a magnitude of 0.4224. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 26, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, October 26, 2087, with a magnitude of 0.4696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "May 22, 2058 Partial Solar Eclipse". timeanddate. Retrieved 17 August 2024.
  2. "Partial Solar Eclipse of 2058 May 22". EclipseWise.com. Retrieved 17 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 119". eclipse.gsfc.nasa.gov.