Solar eclipse of April 19, 1958

Last updated
Solar eclipse of April 19, 1958
SE1958Apr19A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.275
Magnitude 0.9408
Maximum eclipse
Duration427 s (7 min 7 s)
Coordinates 26°30′N123°36′E / 26.5°N 123.6°E / 26.5; 123.6
Max. width of band228 km (142 mi)
Times (UTC)
Greatest eclipse3:27:17
References
Saros 128 (55 of 73)
Catalog # (SE5000) 9416

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, April 19, 1958, [1] with a magnitude of 0.9408. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.2 days after apogee (on April 16, 1958, at 22:40 UTC), the Moon's apparent diameter was smaller. [2]

Contents

Annularity was visible in the Maldives, Nicobar Islands, Burma, Thailand including the capital city Bangkok, Cambodia, Laos, North Vietnam and South Vietnam (now belonging to Vietnam), China, British Hong Kong, Taiwan, Ryukyu Islands and Japan. Places east of International Date line witnessed the eclipse on April 18 (Friday). A partial eclipse was visible for most of Asia.

This was the last of four central solar eclipses visible from Bangkok from 1948 to 1958, where it is extremely rare for a large city to witness four central solar eclipses within 10 years.

Observation

Compared with a total solar eclipse, the chromosphere, corona and solar prominence are invisible during an annular eclipse. However, observations of millimeter-wave solar radio can provide data for lower- and mid-layer structure of the chromosphere, which is more valuable during an annular solar eclipse. [3]

China

A joint observation team formed by the Academy of Sciences of the Soviet Union (predecessor of today's Russian Academy of Sciences) and the Chinese Academy of Sciences conducted 8-millimeter radio observation in Sanya, Hainan Island, China using the equatorial parabolic radio telescope manufactured by the Lebedev Physical Institute and the dual-channel radiometer as a receiver. [3] [4] Radio astronomy started to develop from then in China. [5] Due to the Sino-Soviet split soon after this eclipse, the two countries did not conduct any joint observations of the total solar eclipse of September 22, 1968. On January 23, 1969, the People's Daily published an article reporting the observation of the eclipse in 1968, where it also criticized that the Soviet Union "plundered data of the annular solar eclipse" in 1958, only left China a "worn radio telescope antenna", and later even asked for it back. [6]

Japan

Observation ships were sent to Hachijō-jima, Izu Islands, Japan. [7] Pictures were also taken in Tanegashima, Osumi Islands, and luminosity, air pressure, temperature, humidity, water temperature of the storage tank, ground temperature, wind direction, wind speed and other data were recorded every 10 minutes. [8]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [9]

April 19, 1958 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1958 April 19 at 00:24:41.6 UTC
First Umbral External Contact1958 April 19 at 01:30:53.9 UTC
First Central Line1958 April 19 at 01:33:33.8 UTC
First Umbral Internal Contact1958 April 19 at 01:36:14.1 UTC
First Penumbral Internal Contact1958 April 19 at 02:47:56.9 UTC
Ecliptic Conjunction1958 April 19 at 03:23:59.6 UTC
Greatest Eclipse1958 April 19 at 03:27:16.7 UTC
Greatest Duration1958 April 19 at 03:33:53.0 UTC
Equatorial Conjunction1958 April 19 at 03:36:02.5 UTC
Last Penumbral Internal Contact1958 April 19 at 04:06:22.2 UTC
Last Umbral Internal Contact1958 April 19 at 05:18:13.8 UTC
Last Central Line1958 April 19 at 05:20:52.8 UTC
Last Umbral External Contact1958 April 19 at 05:23:31.5 UTC
Last Penumbral External Contact1958 April 19 at 06:29:44.7 UTC
April 19, 1958 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.94082
Eclipse Obscuration0.88515
Gamma0.27499
Sun Right Ascension01h46m12.4s
Sun Declination+10°58'10.3"
Sun Semi-Diameter15'55.4"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension01h45m56.6s
Moon Declination+11°12'31.2"
Moon Semi-Diameter14'45.9"
Moon Equatorial Horizontal Parallax0°54'11.2"
ΔT32.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of April–May 1958
April 4
Ascending node (full moon)
April 19
Descending node (new moon)
May 3
Ascending node (full moon)
Lunar eclipse chart close-1958Apr04.png SE1958Apr19A.png Lunar eclipse chart close-1958May03.png
Penumbral lunar eclipse
Lunar Saros 102
Annular solar eclipse
Solar Saros 128
Partial lunar eclipse
Lunar Saros 140

Eclipses in 1958

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 128

Inex

Triad

Solar eclipses of 1957–1960

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [10]

Solar eclipse series sets from 1957 to 1960
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 April 30, 1957
SE1957Apr30A.png
Annular (non-central)
0.9992123 October 23, 1957
SE1957Oct23T.png
Total (non-central)
1.0022
128 April 19, 1958
SE1958Apr19A.png
Annular
0.275133 October 12, 1958
SE1958Oct12T.png
Total
−0.2951
138 April 8, 1959
SE1959Apr08A.png
Annular
−0.4546143 October 2, 1959
SE1959Oct02T.png
Total
0.4207
148 March 27, 1960
SE1960Mar27P.png
Partial
−1.1537153 September 20, 1960
SE1960Sep20P.png
Partial
1.2057

Saros 128

This eclipse is a part of Saros series 128, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 29, 984 AD. It contains total eclipses from May 16, 1417 through June 18, 1471; hybrid eclipses from June 28, 1489 through July 31, 1543; and annular eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 27 at 1 minutes, 45 seconds on June 7, 1453, and the longest duration of annularity was produced by member 48 at 8 minutes, 35 seconds on February 1, 1832. All eclipses in this series occur at the Moon’s descending node of orbit. [11]

Series members 47–68 occur between 1801 and 2200:
474849
SE1814Jan21A.gif
January 21, 1814
SE1832Feb01A.gif
February 1, 1832
SE1850Feb12A.gif
February 12, 1850
505152
SE1868Feb23A.gif
February 23, 1868
SE1886Mar05A.gif
March 5, 1886
SE1904Mar17A.png
March 17, 1904
535455
SE1922Mar28A.png
March 28, 1922
SE1940Apr07A.png
April 7, 1940
SE1958Apr19A.png
April 19, 1958
565758
SE1976Apr29A.png
April 29, 1976
SE1994May10A.png
May 10, 1994
SE2012May20A.png
May 20, 2012
596061
SE2030Jun01A.png
June 1, 2030
SE2048Jun11A.png
June 11, 2048
SE2066Jun22A.png
June 22, 2066
626364
SE2084Jul03A.png
July 3, 2084
SE2102Jul15A.png
July 15, 2102
SE2120Jul25A.png
July 25, 2120
656667
Saros128 65van73 SE2138Aug05P.jpg
August 5, 2138
Saros128 66van73 SE2156Aug16P.jpg
August 16, 2156
Saros128 67van73 SE2174Aug27P.jpg
August 27, 2174
68
Saros128 68van73 SE2192Sep06P.jpg
September 6, 2192

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011
September 11–12June 30–July 1April 17–19February 4–5November 22–23
114116118120122
SE1931Sep12P.png
September 12, 1931
SE1935Jun30P.png
June 30, 1935
SE1939Apr19A.png
April 19, 1939
SE1943Feb04T.png
February 4, 1943
SE1946Nov23P.png
November 23, 1946
124126128130132
SE1950Sep12T.png
September 12, 1950
SE1954Jun30T.png
June 30, 1954
SE1958Apr19A.png
April 19, 1958
SE1962Feb05T.png
February 5, 1962
SE1965Nov23A.png
November 23, 1965
134136138140142
SE1969Sep11A.png
September 11, 1969
SE1973Jun30T.png
June 30, 1973
SE1977Apr18A.png
April 18, 1977
SE1981Feb04A.png
February 4, 1981
SE1984Nov22T.png
November 22, 1984
144146148150152
SE1988Sep11A.png
September 11, 1988
SE1992Jun30T.png
June 30, 1992
SE1996Apr17P.png
April 17, 1996
SE2000Feb05P.png
February 5, 2000
SE2003Nov23T.png
November 23, 2003
154156
SE2007Sep11P.png
September 11, 2007
SE2011Jul01P.png
July 1, 2011

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Jun26P.gif
June 26, 1805
(Saros 114)
SE1816May27A.gif
May 27, 1816
(Saros 115)
SE1827Apr26A.gif
April 26, 1827
(Saros 116)
SE1838Mar25T.gif
March 25, 1838
(Saros 117)
SE1849Feb23A.gif
February 23, 1849
(Saros 118)
SE1860Jan23A.png
January 23, 1860
(Saros 119)
SE1870Dec22T.png
December 22, 1870
(Saros 120)
SE1881Nov21A.gif
November 21, 1881
(Saros 121)
SE1892Oct20P.gif
October 20, 1892
(Saros 122)
SE1903Sep21T.png
September 21, 1903
(Saros 123)
SE1914Aug21T.png
August 21, 1914
(Saros 124)
SE1925Jul20A.png
July 20, 1925
(Saros 125)
SE1936Jun19T.png
June 19, 1936
(Saros 126)
SE1947May20T.png
May 20, 1947
(Saros 127)
SE1958Apr19A.png
April 19, 1958
(Saros 128)
SE1969Mar18A.png
March 18, 1969
(Saros 129)
SE1980Feb16T.png
February 16, 1980
(Saros 130)
SE1991Jan15A.png
January 15, 1991
(Saros 131)
SE2001Dec14A.png
December 14, 2001
(Saros 132)
SE2012Nov13T.png
November 13, 2012
(Saros 133)
SE2023Oct14A.png
October 14, 2023
(Saros 134)
SE2034Sep12A.png
September 12, 2034
(Saros 135)
SE2045Aug12T.png
August 12, 2045
(Saros 136)
SE2056Jul12A.png
July 12, 2056
(Saros 137)
SE2067Jun11A.png
June 11, 2067
(Saros 138)
SE2078May11T.png
May 11, 2078
(Saros 139)
SE2089Apr10A.png
April 10, 2089
(Saros 140)
SE2100Mar10A.png
March 10, 2100
(Saros 141)
SE2111Feb08T.png
February 8, 2111
(Saros 142)
SE2122Jan08A.png
January 8, 2122
(Saros 143)
SE2132Dec07A.png
December 7, 2132
(Saros 144)
SE2143Nov07T.png
November 7, 2143
(Saros 145)
SE2154Oct07T.png
October 7, 2154
(Saros 146)
Saros147 31van80 SE2165Sep05A.jpg
September 5, 2165
(Saros 147)
Saros148 30van75 SE2176Aug04T.jpg
August 4, 2176
(Saros 148)
Saros149 30van71 SE2187Jul06T.jpg
July 6, 2187
(Saros 149)
Saros150 27van71 SE2198Jun04A.jpg
June 4, 2198
(Saros 150)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1813Jul27T.gif
July 27, 1813
(Saros 123)
SE1842Jul08T.png
July 8, 1842
(Saros 124)
SE1871Jun18A.gif
June 18, 1871
(Saros 125)
SE1900May28T.png
May 28, 1900
(Saros 126)
SE1929May09T.png
May 9, 1929
(Saros 127)
SE1958Apr19A.png
April 19, 1958
(Saros 128)
SE1987Mar29H.png
March 29, 1987
(Saros 129)
SE2016Mar09T.png
March 9, 2016
(Saros 130)
SE2045Feb16A.png
February 16, 2045
(Saros 131)
SE2074Jan27A.png
January 27, 2074
(Saros 132)
SE2103Jan08T.png
January 8, 2103
(Saros 133)
SE2131Dec19A.png
December 19, 2131
(Saros 134)
SE2160Nov27A.png
November 27, 2160
(Saros 135)
SE2189Nov08T.png
November 8, 2189
(Saros 136)

Notes

  1. "April 19, 1958 Annular Solar Eclipse". timeanddate. Retrieved 6 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 6 August 2024.
  3. 1 2 Н. А. Аменицкий, 李征帆, А. Е. Саломонович, У. В. Хангильдин, 陳鈞量 (June 1959). "1958年4月19日日环食时8毫米太阳射电观测". 天文学报 (Acta Astronomica Sinica). 7 (1): 7–10.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. "Кольцеобразное солнечное затмение 19 апреля 1958 года". Archived from the original on 10 August 2009.
  5. 储姗姗 (2013). "1958年中苏海南岛日食观测与中国射电天文学的开端". 2013中国天文学会学术年会文集.
  6. "用毛泽东思想探索太阳的奥秘——记我国首次大规模日全食综合观测队". People's Daily . 23 January 1969. 一九五八年苏修打着"中苏日环食联合观测"的幌子,来我国掠取日环食资料。观测结束后,把一台破烂不堪的射电望远镜天线留在中国,还美其名曰"帮助中国发展射电天文学"。后来,赫鲁晓夫修正主义集团把这个破烂的射电望远镜天线也要了回去。
  7. "トカラ列島を中心に長い金環日食". 日食ナビ. Archived from the original on 5 March 2016.
  8. "1958年(昭和33年)の金環日食". 鹿児島県天文協会 (Kagoshima Prefecture Astronomical Association). Archived from the original on 4 March 2016.
  9. "Annular Solar Eclipse of 1958 Apr 19". EclipseWise.com. Retrieved 6 August 2024.
  10. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  11. "NASA - Catalog of Solar Eclipses of Saros 128". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of December 4, 2002</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 21, 2001</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.25 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 9, 1997</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, March 8 and Sunday, March 9, 1997, with a magnitude of 1.042. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 18.5 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 29, 1976</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, April 29, 1976, with a magnitude of 0.9421. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.9 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 24, 1995</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 24, 1995, with a magnitude of 1.0213. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 11, 1983</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, June 11, 1983, with a magnitude of 1.0524. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 21, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 5.6 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of September 23, 1987</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, September 23, 1987, with a magnitude of 0.9634. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 5 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of September 22, 1968</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 22, 1968, with a magnitude of 1.0099. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.4 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 25, 1954</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, December 25, 1954, with a magnitude of 0.9323. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. Occurring about 4.9 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of February 4, 1943</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, February 4 and Friday, February 5, 1943, with a magnitude of 1.0331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 22 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Sunday, January 16 and Monday, January 17, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.25 days after perigee and 7.2 days before apogee.

<span class="mw-page-title-main">Solar eclipse of September 21, 1941</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, September 21, 1941, with a magnitude of 1.0379. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.25 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 24, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, July 24, 2074, with a magnitude of 0.9838. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 14, 2088</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.3 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of November 12, 1947</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, November 12, 1947, with a magnitude of 0.965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.1 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of May 9, 1948</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Saturday, May 8 and Sunday, May 9, 1948, with a magnitude of 0.9999. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7 days after apogee and 6.7 days before perigee.

<span class="mw-page-title-main">Solar eclipse of April 19, 1939</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, April 19, 1939, with a magnitude of 0.9731. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.3 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of July 9, 1926</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Friday, July 9 and Saturday, July 10, 1926, with a magnitude of 0.968. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter was smaller.

References