Solar eclipse of September 10, 1942

Last updated
Solar eclipse of September 10, 1942
SE1942Sep10P.png
Map
Type of eclipse
NaturePartial
Gamma 1.2571
Magnitude 0.523
Maximum eclipse
Coordinates 71°54′N50°00′E / 71.9°N 50°E / 71.9; 50
Times (UTC)
Greatest eclipse15:39:32
References
Saros 153 (5 of 70)
Catalog # (SE5000) 9380

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, [1] with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of northern North America, Europe, and North Africa.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

September 10, 1942 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1942 September 10 at 13:57:28.2 UTC
Equatorial Conjunction1942 September 10 at 14:55:13.2 UTC
Greatest Eclipse1942 September 10 at 15:39:32.2 UTC
Ecliptic Conjunction1942 September 10 at 15:53:06.5 UTC
Last Penumbral External Contact1942 September 10 at 17:21:52.0 UTC
September 10, 1942 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.52306
Eclipse Obscuration0.41298
Gamma1.25711
Sun Right Ascension11h13m14.3s
Sun Declination+05°01'18.3"
Sun Semi-Diameter15'53.2"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension11h14m40.0s
Moon Declination+06°09'05.9"
Moon Semi-Diameter15'26.6"
Moon Equatorial Horizontal Parallax0°56'40.5"
ΔT25.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of August–September 1942
August 12
Ascending node (new moon)
August 26
Descending node (full moon)
September 10
Ascending node (new moon)
SE1942Aug12P.png Lunar eclipse chart close-1942Aug26.png SE1942Sep10P.png
Partial solar eclipse
Solar Saros 115
Total lunar eclipse
Lunar Saros 127
Partial solar eclipse
Solar Saros 153

Eclipses in 1942

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 153

Inex

Triad

Solar eclipses of 1939–1942

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on August 12, 1942 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1939 to 1942
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 April 19, 1939
SE1939Apr19A.png
Annular
0.9388123 October 12, 1939
SE1939Oct12T.png
Total
−0.9737
128 April 7, 1940
SE1940Apr07A.png
Annular
0.219133 October 1, 1940
SE1940Oct01T.png
Total
−0.2573
138 March 27, 1941
SE1941Mar27A.png
Annular
−0.5025143 September 21, 1941
SE1941Sep21T.png
Total
0.4649
148 March 16, 1942
SE1942Mar16P.png
Partial
−1.1908153 September 10, 1942
SE1942Sep10P.png
Partial
1.2571

Saros 153

This eclipse is a part of Saros series 153, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 28, 1870. It contains annular eclipses from December 17, 2104 through May 26, 2970. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on August 22, 3114. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 38 at 7 minutes, 1 seconds on September 5, 2537. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]

Series members 1–19 occur between 1870 and 2200:
123
SE1870Jul28Pb.gif
July 28, 1870
SE1888Aug07P.gif
August 7, 1888
SE1906Aug20P.png
August 20, 1906
456
SE1924Aug30P.png
August 30, 1924
SE1942Sep10P.png
September 10, 1942
SE1960Sep20P.png
September 20, 1960
789
SE1978Oct02P.png
October 2, 1978
SE1996Oct12P.png
October 12, 1996
SE2014Oct23P.png
October 23, 2014
101112
SE2032Nov03P.png
November 3, 2032
SE2050Nov14P.png
November 14, 2050
SE2068Nov24P.png
November 24, 2068
131415
SE2086Dec06P.png
December 6, 2086
Saros153 14van70 SE2104Dec17A.jpg
December 17, 2104
Saros153 15van70 SE2122Dec28A.jpg
December 28, 2122
161718
Saros153 16van70 SE2141Jan08A.jpg
January 8, 2141
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
Saros153 18van70 SE2177Jan29A.jpg
January 29, 2177
19
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between February 3, 1859 and June 29, 1946
February 1–3November 21–22September 8–10June 28–29April 16–18
109111113115117
SE1859Feb03P.png
February 3, 1859
SE1862Nov21P.gif
November 21, 1862
SE1870Jun28P.gif
June 28, 1870
SE1874Apr16T.gif
April 16, 1874
119121123125127
SE1878Feb02A.gif
February 2, 1878
SE1881Nov21A.gif
November 21, 1881
SE1885Sep08T.png
September 8, 1885
SE1889Jun28A.png
June 28, 1889
SE1893Apr16T.png
April 16, 1893
129131133135137
SE1897Feb01A.gif
February 1, 1897
SE1900Nov22A.gif
November 22, 1900
SE1904Sep09T.png
September 9, 1904
SE1908Jun28A.png
June 28, 1908
SE1912Apr17H.png
April 17, 1912
139141143145147
SE1916Feb03T.png
February 3, 1916
SE1919Nov22A.png
November 22, 1919
SE1923Sep10T.png
September 10, 1923
SE1927Jun29T.png
June 29, 1927
SE1931Apr18P.png
April 18, 1931
149151153155
SE1935Feb03P.png
February 3, 1935
SE1938Nov21P.png
November 21, 1938
SE1942Sep10P.png
September 10, 1942
SE1946Jun29P.png
June 29, 1946

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1964
SE1811Sep17A.gif
September 17, 1811
(Saros 141)
SE1822Aug16T.gif
August 16, 1822
(Saros 142)
SE1833Jul17T.gif
July 17, 1833
(Saros 143)
SE1844Jun16P.gif
June 16, 1844
(Saros 144)
SE1855May16P.gif
May 16, 1855
(Saros 145)
SE1866Apr15P.gif
April 15, 1866
(Saros 146)
SE1877Mar15P.gif
March 15, 1877
(Saros 147)
SE1888Feb11P.gif
February 11, 1888
(Saros 148)
SE1899Jan11P.gif
January 11, 1899
(Saros 149)
SE1909Dec12P.png
December 12, 1909
(Saros 150)
SE1920Nov10P.png
November 10, 1920
(Saros 151)
SE1931Oct11P.png
October 11, 1931
(Saros 152)
SE1942Sep10P.png
September 10, 1942
(Saros 153)
SE1953Aug09P.png
August 9, 1953
(Saros 154)
SE1964Jul09P.png
July 9, 1964
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1826Nov29P.gif
November 29, 1826
(Saros 149)
SE1855Nov09P.png
November 9, 1855
(Saros 150)
SE1884Oct19P.gif
October 19, 1884
(Saros 151)
SE1913Sep30P.png
September 30, 1913
(Saros 152)
SE1942Sep10P.png
September 10, 1942
(Saros 153)
SE1971Aug20P.png
August 20, 1971
(Saros 154)
SE2000Jul31P.png
July 31, 2000
(Saros 155)
SE2029Jul11P.png
July 11, 2029
(Saros 156)
SE2058Jun21P.png
June 21, 2058
(Saros 157)
SE2087Jun01P.png
June 1, 2087
(Saros 158)
Saros161 01van72 SE2174Apr01P.jpg
April 1, 2174
(Saros 161)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 9, 1986</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986, with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 20, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 20, 1982, with a magnitude of 0.4643. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 2, 1956</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, December 2, 1956, with a magnitude of 0.8047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 11, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, July 11, 1953, with a magnitude of 0.2015. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 14, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, February 14, 1953, with a magnitude of 0.7596. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 9, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 2, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 5, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 5, 2065, with a magnitude of 0.9123. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 6, 2086</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "September 10, 1942 Partial Solar Eclipse". timeanddate. Retrieved 4 August 2024.
  2. "Partial Solar Eclipse of 1942 Sep 10". EclipseWise.com. Retrieved 4 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 153". eclipse.gsfc.nasa.gov.