Solar eclipse of September 10, 1942 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.2571 |
Magnitude | 0.523 |
Maximum eclipse | |
Coordinates | 71°54′N50°00′E / 71.9°N 50°E |
Times (UTC) | |
Greatest eclipse | 15:39:32 |
References | |
Saros | 153 (5 of 70) |
Catalog # (SE5000) | 9380 |
A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, [1] with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial eclipse was visible for parts of northern North America, Europe, and North Africa.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1942 September 10 at 13:57:28.2 UTC |
Equatorial Conjunction | 1942 September 10 at 14:55:13.2 UTC |
Greatest Eclipse | 1942 September 10 at 15:39:32.2 UTC |
Ecliptic Conjunction | 1942 September 10 at 15:53:06.5 UTC |
Last Penumbral External Contact | 1942 September 10 at 17:21:52.0 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.52306 |
Eclipse Obscuration | 0.41298 |
Gamma | 1.25711 |
Sun Right Ascension | 11h13m14.3s |
Sun Declination | +05°01'18.3" |
Sun Semi-Diameter | 15'53.2" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 11h14m40.0s |
Moon Declination | +06°09'05.9" |
Moon Semi-Diameter | 15'26.6" |
Moon Equatorial Horizontal Parallax | 0°56'40.5" |
ΔT | 25.6 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
August 12 Ascending node (new moon) | August 26 Descending node (full moon) | September 10 Ascending node (new moon) |
---|---|---|
Partial solar eclipse Solar Saros 115 | Total lunar eclipse Lunar Saros 127 | Partial solar eclipse Solar Saros 153 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]
The partial solar eclipse on August 12, 1942 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 1939 to 1942 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | April 19, 1939 Annular | 0.9388 | 123 | October 12, 1939 Total | −0.9737 | |
128 | April 7, 1940 Annular | 0.219 | 133 | October 1, 1940 Total | −0.2573 | |
138 | March 27, 1941 Annular | −0.5025 | 143 | September 21, 1941 Total | 0.4649 | |
148 | March 16, 1942 Partial | −1.1908 | 153 | September 10, 1942 Partial | 1.2571 |
This eclipse is a part of Saros series 153, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 28, 1870. It contains annular eclipses from December 17, 2104 through May 26, 2970. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on August 22, 3114. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 38 at 7 minutes, 1 seconds on September 5, 2537. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]
Series members 1–19 occur between 1870 and 2200: | ||
---|---|---|
1 | 2 | 3 |
July 28, 1870 | August 7, 1888 | August 20, 1906 |
4 | 5 | 6 |
August 30, 1924 | September 10, 1942 | September 20, 1960 |
7 | 8 | 9 |
October 2, 1978 | October 12, 1996 | October 23, 2014 |
10 | 11 | 12 |
November 3, 2032 | November 14, 2050 | November 24, 2068 |
13 | 14 | 15 |
December 6, 2086 | December 17, 2104 | December 28, 2122 |
16 | 17 | 18 |
January 8, 2141 | January 19, 2159 | January 29, 2177 |
19 | ||
February 10, 2195 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
23 eclipse events between February 3, 1859 and June 29, 1946 | ||||
---|---|---|---|---|
February 1–3 | November 21–22 | September 8–10 | June 28–29 | April 16–18 |
109 | 111 | 113 | 115 | 117 |
February 3, 1859 | November 21, 1862 | June 28, 1870 | April 16, 1874 | |
119 | 121 | 123 | 125 | 127 |
February 2, 1878 | November 21, 1881 | September 8, 1885 | June 28, 1889 | April 16, 1893 |
129 | 131 | 133 | 135 | 137 |
February 1, 1897 | November 22, 1900 | September 9, 1904 | June 28, 1908 | April 17, 1912 |
139 | 141 | 143 | 145 | 147 |
February 3, 1916 | November 22, 1919 | September 10, 1923 | June 29, 1927 | April 18, 1931 |
149 | 151 | 153 | 155 | |
February 3, 1935 | November 21, 1938 | September 10, 1942 | June 29, 1946 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 1964 | ||||
---|---|---|---|---|
September 17, 1811 (Saros 141) | August 16, 1822 (Saros 142) | July 17, 1833 (Saros 143) | June 16, 1844 (Saros 144) | May 16, 1855 (Saros 145) |
April 15, 1866 (Saros 146) | March 15, 1877 (Saros 147) | February 11, 1888 (Saros 148) | January 11, 1899 (Saros 149) | December 12, 1909 (Saros 150) |
November 10, 1920 (Saros 151) | October 11, 1931 (Saros 152) | September 10, 1942 (Saros 153) | August 9, 1953 (Saros 154) | July 9, 1964 (Saros 155) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
November 29, 1826 (Saros 149) | November 9, 1855 (Saros 150) | October 19, 1884 (Saros 151) |
September 30, 1913 (Saros 152) | September 10, 1942 (Saros 153) | August 20, 1971 (Saros 154) |
July 31, 2000 (Saros 155) | July 11, 2029 (Saros 156) | June 21, 2058 (Saros 157) |
June 1, 2087 (Saros 158) | ||
April 1, 2174 (Saros 161) |
A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986, with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 20, 1982, with a magnitude of 0.4643. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, December 2, 1956, with a magnitude of 0.8047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, July 11, 1953, with a magnitude of 0.2015. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, February 14, 1953, with a magnitude of 0.7596. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 5, 2065, with a magnitude of 0.9123. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.