Solar eclipse of July 11, 2010

Last updated
Solar eclipse of July 11, 2010
Eclipse 2010 Hao 1.JPG
Totality from Hao, French Polynesia
SE2010Jul11T.png
Map
Type of eclipse
NatureTotal
Gamma −0.6788
Magnitude 1.058
Maximum eclipse
Duration320 s (5 min 20 s)
Coordinates 19°42′S121°54′W / 19.7°S 121.9°W / -19.7; -121.9
Max. width of band259 km (161 mi)
Times (UTC)
(P1) Partial begin17:09:41
(U1) Total begin18:15:15
Greatest eclipse19:34:38
(U4) Total end20:51:42
(P4) Partial end21:57:16
References
Saros 146 (27 of 76)
Catalog # (SE5000) 9530

A total solar eclipse occurred at the Moon's descending node of orbit between Sunday, July 11 and Monday, July 12, 2010, [1] [2] [3] [4] with a magnitude of 1.058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee (on July 13, 2010, at 12:20 UTC), the Moon's apparent diameter was larger. [5]

Contents

Visibility

Animated map of the eclipse's visibility over the southern Pacific Ocean SE2010Jul11T.gif
Animated map of the eclipse's visibility over the southern Pacific Ocean

The eclipse on this day was one of the most remote in recorded history. It was visible over much of the southern Pacific Ocean, touching several atolls in French Polynesia, the Cook Islands, Easter Island, and Argentina's Patagonian plains. [6]

Fred Espenak, a NASA astrophysicist, said:

"One of the most unique things about this particular eclipse is that it crosses a unique and interesting archaeological site: Easter Island. On Easter Island there are these great statues... There's a lot of mystery about these statues, but in any case, this is the first total eclipse to hit the island in about 1,400 years." [7]

In French Polynesia, the eclipse was seen with 98 percent totality. During that time, the diamond ring effect and the Baily's beads occurred.

It ended at sunset over the southern tips of Argentina and Chile in South America, including the town of El Calafate. The Sun's altitude was only 1° during the 2 minute 47 second total phase, but Argentino Lake offered an adequate line-of-sight to the eclipse hanging just above the rugged Andes skyline. [2]

A 58% partiality occurred at sunset in Santiago, Chile, but it was not visible due to adverse weather conditions. In other cities such as Valparaíso and Coquimbo, clearer skies permitted the event to be witnessed in continental Chile.

Observations

The moon's diameter was 5.805% larger than the sun's, represented by the magnitude of eclipse of the table above, making for a relatively long eclipse duration of 5 minutes, 20.24 seconds. Solar eclipse July 11 2010 relative diameters.png
The moon's diameter was 5.805% larger than the sun's, represented by the magnitude of eclipse of the table above, making for a relatively long eclipse duration of 5 minutes, 20.24 seconds.
Time lapse images of the eclipse as seen from Vina del Mar, Chile ECLIPSEparcial chile.jpg
Time lapse images of the eclipse as seen from Viña del Mar, Chile

Total eclipse began 750 kilometers (470 mi) southeast of Tonga at approximately 18:15 UTC and reached Easter Island by 20:11 UTC. [8] The global sky photography project The World At Night stationed photographers throughout the eclipse's visibility track. Eclipse chasers photographed the event on board a chartered airplane, [9] cruise ships, numerous Pacific islands, and in Argentina's Patagonia region. Totality was observed for four minutes and 41 seconds (4:41) on Easter Island, [6] where it was observed for the first time in 1,400 years. [10] Approximately 4,000 observers visited Easter Island for this eclipse, including tourists, scientists, photographers, filmmakers and journalists, [11] prompting an increase in security at its important moai archeological sites. The eclipse occurred at the same time that the final game of the 2010 FIFA World Cup was being played in South Africa, and many soccer fans in Tahiti watched the match instead of observing the partial eclipse with a high percentage of obscuring the sun by over 98%. [8] [12] The path of totality of this eclipse barely missed some significant inhabited islands, including passing just about 20 km north of the northern end of Tahiti.[ citation needed ]

This eclipse was the first one to happen over French Polynesia in 350 years. An estimated 5,000 tourists visited various islands in the archipelago to observe the event. Nearly 120,000 pairs of special glasses were distributed for observers. [13] Eclipse chasers were also able to observe the eclipse at El Calafate, near the southern tip of Argentina, before the sun set just two minutes later. [6]

Several hours after the eclipse was observed in continental Chile, a magnitude 6.2 earthquake struck in the Antofagasta Region. There were no major injuries or damage in the nearby cities of Calama, Chile and San Pedro de Atacama. [14]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [15]

July 11, 2010 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2010 July 11 at 17:10:44.0 UTC
First Umbral External Contact2010 July 11 at 18:16:18.5 UTC
First Central Line2010 July 11 at 18:17:56.9 UTC
First Umbral Internal Contact2010 July 11 at 18:19:36.2 UTC
Greatest Duration2010 July 11 at 19:32:32.2 UTC
Greatest Eclipse2010 July 11 at 19:34:37.9 UTC
Ecliptic Conjunction2010 July 11 at 19:41:33.7 UTC
Equatorial Conjunction2010 July 11 at 19:52:01.5 UTC
Last Umbral Internal Contact2010 July 11 at 20:49:26.0 UTC
Last Central Line2010 July 11 at 20:51:07.2 UTC
Last Umbral External Contact2010 July 11 at 20:52:47.5 UTC
Last Penumbral External Contact2010 July 11 at 21:58:20.8 UTC
July 11, 2010 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.05805
Eclipse Obscuration1.11946
Gamma−0.67877
Sun Right Ascension07h23m57.6s
Sun Declination+22°02'11.0"
Sun Semi-Diameter15'43.9"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension07h23m15.8s
Moon Declination+21°22'29.3"
Moon Semi-Diameter16'26.6"
Moon Equatorial Horizontal Parallax1°00'20.9"
ΔT66.2 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of June–July 2010
June 26
Ascending node (full moon)
July 11
Descending node (new moon)
Lunar eclipse chart close-2010jun26.png SE2010Jul11T.png
Partial lunar eclipse
Lunar Saros 120
Total solar eclipse
Solar Saros 146

Eclipses in 2010

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 146

Inex

Triad

Solar eclipses of 2008–2011

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [16]

The partial solar eclipses on June 1, 2011 and November 25, 2011 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2008 to 2011
Ascending node Descending node
SarosMapGammaSarosMapGamma
121
Solar eclipse 2008Feb07-New Zealand-partial-Greg Hewgill.jpg
Partial in Christchurch, New Zealand
February 7, 2008
SE2008Feb07A.png
Annular
−0.95701126
Corona.jpg
Totality in Kumul, Xinjiang, China
August 1, 2008
SE2008Aug01T.png
Total
0.83070
131
Annular solar eclipse pky.png
Annularity in Palangka Raya, Indonesia
January 26, 2009
SE2009Jan26A.png
Annular
−0.28197136
Solar eclipse 22 July 2009 taken by Lutfar Rahman Nirjhar from Bangladesh.jpg
Totality in Kurigram District, Bangladesh
July 22, 2009
SE2009Jul22T.png
Total
0.06977
141
Solar annular eclipse of January 15, 2010 in Jinan, China.jpg
Annularity in Jinan, Shandong, China
January 15, 2010
SE2010Jan15A.png
Annular
0.40016146
Eclipse 2010 Hao 1.JPG
Totality in Hao, French Polynesia
July 11, 2010
SE2010Jul11T.png
Total
−0.67877
151
Solar eclipse poland 4thjan2011.jpg
Partial in Poland
January 4, 2011
SE2011Jan04P.png
Partial
1.06265156 July 1, 2011
SE2011Jul01P.png
Partial
−1.49171

Saros 146

This eclipse is a part of Saros series 146, repeating every 18 years, 11 days, and containing 76 events. The series started with a partial solar eclipse on September 19, 1541. It contains total eclipses from May 29, 1938 through October 7, 2154; hybrid eclipses from October 17, 2172 through November 20, 2226; and annular eclipses from November 30, 2244 through August 10, 2659. The series ends at member 76 as a partial eclipse on December 29, 2893. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 26 at 5 minutes, 21 seconds on June 30, 1992, and the longest duration of annularity will be produced by member 63 at 3 minutes, 30 seconds on August 10, 2659. All eclipses in this series occur at the Moon’s descending node of orbit. [17]

Series members 16–37 occur between 1801 and 2200:
161718
SE1801Apr13P.png
March 13, 1812
SE1819Apr24P.png
March 24, 1830
SE1837May04P.png
April 3, 1848
192021
SE1855May16P.png
April 15, 1866
SE1873May26P.png
April 25, 1884
SE1902May07P.png
May 7, 1902
222324
SE1920May18P.png
May 18, 1920
SE1938May29T.png
May 29, 1938
SE1956Jun08T.png
June 8, 1956
252627
SE1974Jun20T.png
June 20, 1974
SE1992Jun30T.png
June 30, 1992
SE2010Jul11T.png
July 11, 2010
282930
SE2028Jul22T.png
July 22, 2028
SE2046Aug02T.png
August 2, 2046
SE2064Aug12T.png
August 12, 2064
313233
SE2082Aug24T.png
August 24, 2082
SE2100Sep04T.png
September 4, 2100
SE2118Sep15T.png
September 15, 2118
343536
SE2136Sep26T.png
September 26, 2136
SE2154Oct07T.png
October 7, 2154
SE2172Oct17H.png
October 17, 2172
37
SE2190Oct29H.png
October 29, 2190

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 11, 1953 and July 11, 2029
July 10–11April 29–30February 15–16December 4September 21–23
116118120122124
SE1953Jul11P.png
July 11, 1953
SE1957Apr30A.png
April 30, 1957
SE1961Feb15T.png
February 15, 1961
SE1964Dec04P.png
December 4, 1964
SE1968Sep22T.png
September 22, 1968
126128130132134
SE1972Jul10T.png
July 10, 1972
SE1976Apr29A.png
April 29, 1976
SE1980Feb16T.png
February 16, 1980
SE1983Dec04A.png
December 4, 1983
SE1987Sep23A.png
September 23, 1987
136138140142144
SE1991Jul11T.png
July 11, 1991
SE1995Apr29A.png
April 29, 1995
SE1999Feb16A.png
February 16, 1999
SE2002Dec04T.png
December 4, 2002
SE2006Sep22A.png
September 22, 2006
146148150152154
SE2010Jul11T.png
July 11, 2010
SE2014Apr29A.png
April 29, 2014
SE2018Feb15P.png
February 15, 2018
SE2021Dec04T.png
December 4, 2021
SE2025Sep21P.png
September 21, 2025
156
SE2029Jul11P.png
July 11, 2029

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1803Feb21T.png
February 21, 1803
(Saros 127)
SE1814Jan21A.gif
January 21, 1814
(Saros 128)
SE1824Dec20Am.gif
December 20, 1824
(Saros 129)
SE1835Nov20T.png
November 20, 1835
(Saros 130)
SE1846Oct20A.png
October 20, 1846
(Saros 131)
SE1857Sep18A.png
September 18, 1857
(Saros 132)
SE1868Aug18T.png
August 18, 1868
(Saros 133)
SE1879Jul19A.png
July 19, 1879
(Saros 134)
SE1890Jun17A.png
June 17, 1890
(Saros 135)
SE1901May18T.png
May 18, 1901
(Saros 136)
SE1912Apr17H.png
April 17, 1912
(Saros 137)
SE1923Mar17A.png
March 17, 1923
(Saros 138)
SE1934Feb14T.png
February 14, 1934
(Saros 139)
SE1945Jan14A.png
January 14, 1945
(Saros 140)
SE1955Dec14A.png
December 14, 1955
(Saros 141)
SE1966Nov12T.png
November 12, 1966
(Saros 142)
SE1977Oct12T.png
October 12, 1977
(Saros 143)
SE1988Sep11A.png
September 11, 1988
(Saros 144)
SE1999Aug11T.png
August 11, 1999
(Saros 145)
SE2010Jul11T.png
July 11, 2010
(Saros 146)
SE2021Jun10A.png
June 10, 2021
(Saros 147)
SE2032May09A.png
May 9, 2032
(Saros 148)
SE2043Apr09T.png
April 9, 2043
(Saros 149)
SE2054Mar09P.png
March 9, 2054
(Saros 150)
SE2065Feb05P.png
February 5, 2065
(Saros 151)
SE2076Jan06T.png
January 6, 2076
(Saros 152)
SE2086Dec06P.png
December 6, 2086
(Saros 153)
SE2097Nov04A.png
November 4, 2097
(Saros 154)
Saros155 11van71 SE2108Oct05T.jpg
October 5, 2108
(Saros 155)
Saros156 07van69 SE2119Sep05P.jpg
September 5, 2119
(Saros 156)
Saros157 05van70 SE2130Aug04P.jpg
August 4, 2130
(Saros 157)
Saros158 05van70 SE2141Jul03P.jpg
July 3, 2141
(Saros 158)
Saros159 02van70 SE2152Jun03P.jpg
June 3, 2152
(Saros 159)
Saros161 01van72 SE2174Apr01P.jpg
April 1, 2174
(Saros 161)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1807Nov29H.gif
November 29, 1807
(Saros 139)
SE1836Nov09T.gif
November 9, 1836
(Saros 140)
SE1865Oct19A.png
October 19, 1865
(Saros 141)
SE1894Sep29T.gif
September 29, 1894
(Saros 142)
SE1923Sep10T.png
September 10, 1923
(Saros 143)
SE1952Aug20A.png
August 20, 1952
(Saros 144)
SE1981Jul31T.png
July 31, 1981
(Saros 145)
SE2010Jul11T.png
July 11, 2010
(Saros 146)
SE2039Jun21A.png
June 21, 2039
(Saros 147)
SE2068May31T.png
May 31, 2068
(Saros 148)
SE2097May11T.png
May 11, 2097
(Saros 149)
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
(Saros 150)
SE2155Apr02A.png
April 2, 2155
(Saros 151)
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184
(Saros 152)

Notes

  1. "July 11, 2010 Total Solar Eclipse". timeanddate. Retrieved 11 August 2024.
  2. 1 2 "Total Solar Eclipse of 2010 July 11". NASA. Archived from the original on March 11, 2008. Retrieved July 12, 2010.
  3. "Chasing a moment in the sun". The Ottawa Citizen. 2010-07-11. p. 12. Retrieved 2023-10-25 via Newspapers.com.
  4. "Solar eclipse fans chase moment (out of) sun". The Des Moines Register. 2010-07-11. p. 12. Retrieved 2023-10-25 via Newspapers.com.
  5. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 11 August 2024.
  6. 1 2 3 Malik, Tariq (July 12, 2010). "Total solar eclipse blots out sun, amazes skywatchers". The Christian Science Monitor . Retrieved July 12, 2010.
  7. "Solar Eclipse to Darken Easter Island Sunday". National Geographic Society. July 8, 2010. Archived from the original on July 12, 2010. Retrieved July 12, 2010.
  8. 1 2 "Total solar eclipse crosses South Pacific". BBC News. July 11, 2010. Retrieved July 12, 2010.
  9. Grossman, Lisa (July 22, 2010). "Longest Eclipse Ever: Airplane Chases the Moon's Shadow". Wired. Retrieved August 21, 2017.
  10. "Solar Eclipse to Darken Easter Island Sunday". National Geographic. July 8, 2010. Archived from the original on October 31, 2020. Retrieved October 28, 2020.
  11. Eclipse chasing: four minutes of bliss Archived 2013-06-27 at the Wayback Machine , Australian Geographic, July 16, 2010
  12. Tee, Gillian (July 10, 2010). "Solar eclipse predicted at same time as World Cup final". CNN . Retrieved July 12, 2010.
  13. "French Polynesia awaits first solar eclipse in 350 years". Australia Network. July 10, 2010. Archived from the original on July 13, 2010. Retrieved July 12, 2010.
  14. "6.2 Magnitude Earthquake Strikes Chile Hours After Solar Eclipse". All Headline News. July 12, 2010. Archived from the original on July 14, 2010. Retrieved July 12, 2010.
  15. "Total Solar Eclipse of 2010 Jul 11". EclipseWise.com. Retrieved 11 August 2024.
  16. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  17. "NASA - Catalog of Solar Eclipses of Saros 146". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of August 11, 1999</span> Total eclipse

A total solar eclipse occurred at the Moon’s ascending node of orbit on Wednesday, August 11, 1999, with a magnitude of 1.0286. A solar eclipse occurs when the moon passes between earth and the sun, thereby totally or partly obscuring the image of the sun for a viewer on earth. A total solar eclipse occurs when the moon's apparent diameter is larger than the sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.5 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 23, 2003</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Sunday, November 23 and Monday, November 24, 2003, with a magnitude of 1.0379. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 25 minutes before perigee, the Moon's apparent diameter was near its maximum. Perigee did occur just past the greatest point of this eclipse.

<span class="mw-page-title-main">Solar eclipse of December 4, 2002</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 21, 2001</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.25 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 8, 2005</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, April 8, 2005, with a magnitude of 1.0074. It was a hybrid event, a narrow total eclipse, and beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4.3 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 1, 2008</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Friday, August 1, 2008, with a magnitude of 1.0394. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 29, 2014</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, April 29, 2014, with a magnitude of 0.9868. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 6.2 days after perigee and 7.2 days before apogee.

<span class="mw-page-title-main">Solar eclipse of November 13, 2012</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, November 13 and Wednesday, November 14, 2012, with a magnitude of 1.05. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 12 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 2, 2019</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 2, 2019, with a magnitude of 1.0459. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the Sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 10, 2013</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit between Thursday, May 9 and Friday, May 10, 2013, with a magnitude of 0.9544. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.6 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of November 25, 2011</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s ascending node of orbit on Friday, November 25, 2011, with a magnitude of 0.9047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 3, 2013</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, November 3, 2013, with a magnitude of 1.0159. It was a hybrid event, a narrow total eclipse, and beginning as an annular eclipse and concluding as a total eclipse, in this particular case. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of February 26, 1998</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 26, 1998, with a magnitude of 1.0441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 24, 2063</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, August 23 and Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 hours before perigee, the Moon's apparent diameter will be larger. Perigee did occur near the very end of this eclipse.

<span class="mw-page-title-main">Solar eclipse of September 2, 1997</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit between Monday, September 1 and Tuesday, September 2, 1997, with a magnitude of 0.8988. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 14, 2020</span> Total eclipse

A total solar eclipse occurred at the Moon’s descending node of orbit on Monday, December 14, 2020, with a magnitude of 1.0254. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the Sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 12, 2064</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 6, 1883</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Sunday, May 6, and Monday, May 7, 1883, with a magnitude of 1.0634. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 3, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Friday, January 3 and Saturday, January 4, 1908, with a magnitude of 1.0437. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 14 hours before perigee, the Moon's apparent diameter was larger.

References