Solar eclipse of March 31, 2090

Last updated
Solar eclipse of March 31, 2090
SE2090Mar31P.png
Map
Type of eclipse
NaturePartial
Gamma −1.1028
Magnitude 0.7843
Maximum eclipse
Coordinates 72°06′S156°18′W / 72.1°S 156.3°W / -72.1; -156.3
Times (UTC)
Greatest eclipse3:38:08
References
Saros 150 (21 of 71)
Catalog # (SE5000) 9710

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, [1] with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

The partial solar eclipse will be visible for parts of Antarctica, southeastern Australia, and Oceania.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

March 31, 2090 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2090 March 31 at 01:27:45.4 UTC
Equatorial Conjunction2090 March 31 at 02:57:30.3 UTC
Greatest Eclipse2090 March 31 at 03:38:07.9 UTC
Ecliptic Conjunction2090 March 31 at 03:50:52.7 UTC
Last Penumbral External Contact2090 March 31 at 05:48:45.4 UTC
March 31, 2090 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.78428
Eclipse Obscuration0.70680
Gamma−1.10277
Sun Right Ascension00h40m11.0s
Sun Declination+04°19'18.8"
Sun Semi-Diameter16'00.8"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension00h41m23.0s
Moon Declination+03°22'02.4"
Moon Semi-Diameter14'52.2"
Moon Equatorial Horizontal Parallax0°54'34.6"
ΔT114.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March 2090
March 15
Ascending node (full moon)
March 31
Descending node (new moon)
SE2090Mar31P.png
Total lunar eclipse
Lunar Saros 124
Partial solar eclipse
Solar Saros 150

Eclipses in 2090

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 150

Inex

Triad

Solar eclipses of 2087–2090

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on June 1, 2087 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2087 to 2090
Descending node Ascending node
SarosMapGammaSarosMapGamma
120 May 2, 2087
SE2087May02P.png
Partial
1.1139125 October 26, 2087
SE2087Oct26P.png
Partial
−1.2882
130 April 21, 2088
SE2088Apr21T.png
Total
0.4135135 October 14, 2088
SE2088Oct14A.png
Annular
−0.5349
140 April 10, 2089
SE2089Apr10A.png
Annular
−0.3319145 October 4, 2089
SE2089Oct04T.png
Total
0.2167
150 March 31, 2090
SE2090Mar31P.png
Partial
−1.1028155 September 23, 2090
SE2090Sep23T.png
Total
0.9157

Saros 150

This eclipse is a part of Saros series 150, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 24, 1729. It contains annular eclipses from April 22, 2126 through June 22, 2829. There are no hybrid or total eclipses in this set. The series ends at member 71 as a partial eclipse on September 29, 2991. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 45 at 9 minutes, 58 seconds on December 19, 2522. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 5–27 occur between 1801 and 2200:
567
SE1801Oct07P.png
October 7, 1801
SE1819Oct19P.gif
October 19, 1819
SE1837Oct29P.gif
October 29, 1837
8910
SE1855Nov09P.gif
November 9, 1855
SE1873Nov20P.gif
November 20, 1873
SE1891Dec01P.gif
December 1, 1891
111213
SE1909Dec12P.png
December 12, 1909
SE1927Dec24P.png
December 24, 1927
SE1946Jan03P.png
January 3, 1946
141516
SE1964Jan14P.png
January 14, 1964
SE1982Jan25P.png
January 25, 1982
SE2000Feb05P.png
February 5, 2000
171819
SE2018Feb15P.png
February 15, 2018
SE2036Feb27P.png
February 27, 2036
SE2054Mar09P.png
March 9, 2054
202122
SE2072Mar19P.png
March 19, 2072
SE2090Mar31P.png
March 31, 2090
SE2108Apr11P.gif
April 11, 2108
232425
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
Saros150 24van71 SE2144May03A.jpg
May 3, 2144
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
2627
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
Saros150 27van71 SE2198Jun04A.jpg
June 4, 2198

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 12, 2029 and November 4, 2116
June 11–12March 30–31January 16November 4–5August 23–24
118120122124126
SE2029Jun12P.png
June 12, 2029
SE2033Mar30T.png
March 30, 2033
SE2037Jan16P.png
January 16, 2037
SE2040Nov04P.png
November 4, 2040
SE2044Aug23T.png
August 23, 2044
128130132134136
SE2048Jun11A.png
June 11, 2048
SE2052Mar30T.png
March 30, 2052
SE2056Jan16A.png
January 16, 2056
SE2059Nov05A.png
November 5, 2059
SE2063Aug24T.png
August 24, 2063
138140142144146
SE2067Jun11A.png
June 11, 2067
SE2071Mar31A.png
March 31, 2071
SE2075Jan16T.png
January 16, 2075
SE2078Nov04A.png
November 4, 2078
SE2082Aug24T.png
August 24, 2082
148150152154156
SE2086Jun11T.png
June 11, 2086
SE2090Mar31P.png
March 31, 2090
SE2094Jan16T.png
January 16, 2094
SE2097Nov04A.png
November 4, 2097
Saros156 06van69 SE2101Aug24P.jpg
August 24, 2101
158160162164
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
Saros164 02van80 SE2116Nov04P.jpg
November 4, 2116

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1806Jun16T.png
June 16, 1806
(Saros 124)
SE1817May16A.gif
May 16, 1817
(Saros 125)
Saros126 37van72 SE1828Apr14H.jpg
April 14, 1828
(Saros 126)
SE1839Mar15T.gif
March 15, 1839
(Saros 127)
SE1850Feb12A.gif
February 12, 1850
(Saros 128)
SE1861Jan11A.gif
January 11, 1861
(Saros 129)
SE1871Dec12T.png
December 12, 1871
(Saros 130)
SE1882Nov10A.gif
November 10, 1882
(Saros 131)
SE1893Oct09A.gif
October 9, 1893
(Saros 132)
SE1904Sep09T.png
September 9, 1904
(Saros 133)
SE1915Aug10A.png
August 10, 1915
(Saros 134)
SE1926Jul09A.png
July 9, 1926
(Saros 135)
SE1937Jun08T.png
June 8, 1937
(Saros 136)
SE1948May09A.png
May 9, 1948
(Saros 137)
SE1959Apr08A.png
April 8, 1959
(Saros 138)
SE1970Mar07T.png
March 7, 1970
(Saros 139)
SE1981Feb04A.png
February 4, 1981
(Saros 140)
SE1992Jan04A.png
January 4, 1992
(Saros 141)
SE2002Dec04T.png
December 4, 2002
(Saros 142)
SE2013Nov03H.png
November 3, 2013
(Saros 143)
SE2024Oct02A.png
October 2, 2024
(Saros 144)
SE2035Sep02T.png
September 2, 2035
(Saros 145)
SE2046Aug02T.png
August 2, 2046
(Saros 146)
SE2057Jul01A.png
July 1, 2057
(Saros 147)
SE2068May31T.png
May 31, 2068
(Saros 148)
SE2079May01T.png
May 1, 2079
(Saros 149)
SE2090Mar31P.png
March 31, 2090
(Saros 150)
SE2101Feb28A.png
February 28, 2101
(Saros 151)
Saros152 18van70 SE2112Jan29T.jpg
January 29, 2112
(Saros 152)
Saros153 15van70 SE2122Dec28A.jpg
December 28, 2122
(Saros 153)
Saros154 13van71 SE2133Nov26A.jpg
November 26, 2133
(Saros 154)
Saros155 13van71 SE2144Oct26T.jpg
October 26, 2144
(Saros 155)
Saros156 09van69 SE2155Sep26A.jpg
September 26, 2155
(Saros 156)
SE2166Aug25A.png
August 25, 2166
(Saros 157)
Saros158 07van70 SE2177Jul25P.jpg
July 25, 2177
(Saros 158)
Saros159 04van70 SE2188Jun24P.jpg
June 24, 2188
(Saros 159)
Saros160 02van71 SE2199May24P.jpg
May 24, 2199
(Saros 160)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1829Sep28A.gif
September 28, 1829
(Saros 141)
SE1858Sep07T.png
September 7, 1858
(Saros 142)
SE1887Aug19T.png
August 19, 1887
(Saros 143)
SE1916Jul30A.png
July 30, 1916
(Saros 144)
SE1945Jul09T.png
July 9, 1945
(Saros 145)
SE1974Jun20T.png
June 20, 1974
(Saros 146)
SE2003May31A.png
May 31, 2003
(Saros 147)
SE2032May09A.png
May 9, 2032
(Saros 148)
SE2061Apr20T.png
April 20, 2061
(Saros 149)
SE2090Mar31P.png
March 31, 2090
(Saros 150)
Saros151 20van72 SE2119Mar11A.jpg
March 11, 2119
(Saros 151)
Saros152 20van70 SE2148Feb19T.jpg
February 19, 2148
(Saros 152)
Saros153 18van70 SE2177Jan29A.jpg
January 29, 2177
(Saros 153)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 5, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Saturday, February 5, 2000, with a magnitude of 0.5795. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 17, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit between Wednesday, April 17 and Thursday, April 18, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 25, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, September 25, 2098, with a magnitude of 0.7871. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 13, 2061</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.1 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.25 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 21, 2099</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 21, 2099, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 15, 2096</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 11, 2097</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 11, 2097, with a magnitude of 1.0538. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2094</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 16, 2094, with a magnitude of 1.0342. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 10.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of June 11, 2086</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 11, 2086, with a magnitude of 1.0174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4.4 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 6, 2086</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "March 31, 2090 Partial Solar Eclipse". timeanddate. Retrieved 24 August 2024.
  2. "Partial Solar Eclipse of 2090 Mar 31". EclipseWise.com. Retrieved 24 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 150". eclipse.gsfc.nasa.gov.