Solar eclipses on Jupiter

Last updated
A picture of Jupiter and its moon Io taken by the Hubble Space Telescope. The black spot is Io's shadow. JupiterandIo.jpg
A picture of Jupiter and its moon Io taken by the Hubble Space Telescope. The black spot is Io's shadow.
Jupiter and the Great Red Spot (visible on the lower right), with Ganymede (immediately on the upper right) casting its shadow on Jupiter. The other moons are Europa (further right), Io (first on left), and Callisto (furthest on left). Photo taken with Nikon P900 on 24 July 2020, ten days after opposition. Jupiter and Red Spot, Ganymede (and transit), Io, Europa, and Callisto, taken with Nikon P900 - 2020-07-24.jpg
Jupiter and the Great Red Spot (visible on the lower right), with Ganymede (immediately on the upper right) casting its shadow on Jupiter. The other moons are Europa (further right), Io (first on left), and Callisto (furthest on left). Photo taken with Nikon P900 on 24 July 2020, ten days after opposition.

Solar eclipses on Jupiter occur when any of the natural satellites of Jupiter pass in front of the Sun as seen from the planet Jupiter. [1]

Contents

For bodies that appear smaller in angular diameter than the Sun, the proper term would be a transit. For bodies that are larger than the apparent size of the Sun, the proper term would be an occultation.

There are five satellites capable of completely occulting the Sun: Amalthea [ citation needed ], Io, Europa, Ganymede and Callisto. All of the others are too small or too distant to be able to completely occult the Sun, so can only transit the Sun. Most of the more distant satellites also have orbits that are strongly inclined to the plane of Jupiter's orbit, and would rarely be seen transiting Jupiter.

When the four largest satellites of Jupiter, the Galilean satellites, occult the Sun, a shadow transit can be seen on the surface of Jupiter which can be observed from Earth in telescopes.

Io shadow on Jupiter. Jupiter eclipse Io.jpg
Io shadow on Jupiter.

Eclipses of the Sun from Jupiter are not particularly rare, since Jupiter is very large and its axial tilt (which is related to the plane of the orbits of its satellites) is relatively small—indeed, the vast majority of the orbits of all five of the objects capable of occulting the Sun will result in a solar occultation visible from somewhere on Jupiter, with every satellite except Callisto guaranteed to produce an eclipse on every orbit.

The related phenomenon of satellite eclipses in the shadow of Jupiter has been observed since the time of Giovanni Cassini and Ole Rømer in the mid Seventeenth Century. It was soon noticed that predicted times differed from observed times in a regular way, varying from up to ten minutes early to up to ten minutes late. Rømer correctly realized that the variations were caused by the varying distance between Earth and Jupiter as the two planets moved in their orbits around the Sun. Later, in 1678, Christiaan Huygens used these errors to make the first accurate determination of the speed of light.

Spacecraft can be used to observe the solar eclipses on Jupiter; these include Pioneer 10 and Pioneer 11 (1973 and 1974), Voyager 1 and Voyager 2 (1979), Galileo orbiter (1995–2003), Cassini–Huygens (2000), New Horizons (2007), and Juno (2016-present) observed the transits of their moons and its shadows.

Visibility from Jupiter

The mean angular diameter of the Sun as viewed from Jupiter is 372 arc-seconds, or 6' 12" (about 15 that of the Sun as viewed from Earth), varying slightly from 381" at perihelion to 357" at aphelion. Unlike the near coincidence of the apparent sizes of the Moon and Sun as viewed from Earth, this perspective exaggerates the apparent diameters of all the Galilean moons in comparison to the Sun. Even distant Callisto is over 50% larger, and Io is nearly six times as large. This disparity in angular size makes the moons' shadows on Jupiter more defined than the lunar shadow on Earth during a total solar eclipse, as it narrows the penumbra for a given distance. [2]

Related Research Articles

<span class="mw-page-title-main">Eclipse</span> Astronomical event where one body is hidden by another

An eclipse is an astronomical event that occurs when an astronomical object or spacecraft is temporarily obscured, by passing into the shadow of another body or by having another body pass between it and the viewer. This alignment of three celestial objects is known as a syzygy. An eclipse is the result of either an occultation or a transit. A "deep eclipse" is when a small astronomical object is behind a bigger one.

<span class="mw-page-title-main">Galilean moons</span> Four largest moons of Jupiter

The Galilean moons, or Galilean satellites, are the four largest moons of Jupiter: Io, Europa, Ganymede, and Callisto. They are the most readily visible Solar System objects after the unaided visible Saturn, the dimmest of the classical planets, allowing observation with common binoculars, even under night sky conditions of high light pollution. The invention of the telescope enabled the discovery of the moons in 1610. Through this, they became the first Solar System objects discovered since humans have started tracking the classical planets, and the first objects to be found to orbit any planet beyond Earth.

<span class="mw-page-title-main">Callisto (moon)</span> Second-largest moon of Jupiter

Callisto, or Jupiter IV, is the second-largest moon of Jupiter, after Ganymede. In the Solar System it is the third-largest moon after Ganymede and Saturn's largest moon Titan, and as large as the smallest planet Mercury, though only about a third as massive. Callisto is, with a diameter of 4,821 km, roughly a third larger than Earth's Moon and orbits Jupiter on average at a distance of 1,883,000 km, which is about six times further out than the Moon orbiting Earth. It is the outermost of the four large Galilean moons of Jupiter, which were discovered in 1610 with one of the first telescopes, being visible from Earth with common binoculars.

<span class="mw-page-title-main">Conjunction (astronomy)</span> When two astronomical objects have the same right ascension or the same ecliptic longitude

In astronomy, a conjunction occurs when two astronomical objects or spacecraft appear to be close to each other in the sky. This means they have either the same right ascension or the same ecliptic longitude, usually as observed from Earth.

<span class="mw-page-title-main">Natural satellite</span> Astronomical body that orbits a planet

A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body. Natural satellites are colloquially referred to as moons, a derivation from the Moon of Earth.

<span class="mw-page-title-main">Ganymede (moon)</span> Largest moon of Jupiter and in the Solar System

Ganymede, or Jupiter III, is the largest and most massive natural satellite of Jupiter as well as the largest in the Solar System, being a planetary-mass moon. It is the largest Solar System object without a substantial atmosphere, despite being the only moon in the Solar System with a substantial magnetic field. Like Titan, Saturn's largest moon, it is larger than the planet Mercury, but has somewhat less surface gravity than Mercury, Io, or the Moon due to its lower density compared to the three.

<span class="mw-page-title-main">Astronomical transit</span> Term in astronomy

In astronomy, a transit is the passage of a celestial body directly between a larger body and the observer. As viewed from a particular vantage point, the transiting body appears to move across the face of the larger body, covering a small portion of it.

<span class="mw-page-title-main">Occultation</span> Occlusion of an object by another object that passes between it and the observer

An occultation is an event that occurs when one object is hidden from the observer by another object that passes between them. The term is often used in astronomy, but can also refer to any situation in which an object in the foreground blocks from view (occults) an object in the background. In this general sense, occultation applies to the visual scene observed from low-flying aircraft when foreground objects obscure distant objects dynamically, as the scene changes over time.

<span class="mw-page-title-main">Moons of Jupiter</span> Natural satellites of the planet Jupiter

There are 95 moons of Jupiter with confirmed orbits as of 5 February 2024. This number does not include a number of meter-sized moonlets thought to be shed from the inner moons, nor hundreds of possible kilometer-sized outer irregular moons that were only briefly captured by telescopes. All together, Jupiter's moons form a satellite system called the Jovian system. The most massive of the moons are the four Galilean moons: Io, Europa, Ganymede, and Callisto, which were independently discovered in 1610 by Galileo Galilei and Simon Marius and were the first objects found to orbit a body that was neither Earth nor the Sun. Much more recently, beginning in 1892, dozens of far smaller Jovian moons have been detected and have received the names of lovers or daughters of the Roman god Jupiter or his Greek equivalent Zeus. The Galilean moons are by far the largest and most massive objects to orbit Jupiter, with the remaining 91 known moons and the rings together composing just 0.003% of the total orbiting mass.

<span class="mw-page-title-main">Extraterrestrial sky</span> Extraterrestrial view of outer space

In astronomy, an extraterrestrial sky is a view of outer space from the surface of an astronomical body other than Earth.

<span class="mw-page-title-main">Io (moon)</span> Innermost of the four Galilean moons of Jupiter

Io, or Jupiter I, is the innermost and second-smallest of the four Galilean moons of the planet Jupiter. Slightly larger than Earth's moon, Io is the fourth-largest moon in the Solar System, has the highest density of any moon, the strongest surface gravity of any moon, and the lowest amount of water by atomic ratio of any known astronomical object in the Solar System. It was discovered in 1610 by Galileo Galilei and was named after the mythological character Io, a priestess of Hera who became one of Zeus's lovers.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

<span class="mw-page-title-main">Exploration of Jupiter</span> Overview of the exploration of Jupiter the planet and its moons

The exploration of Jupiter has been conducted via close observations by automated spacecraft. It began with the arrival of Pioneer 10 into the Jovian system in 1973, and, as of 2023, has continued with eight further spacecraft missions in the vicinity of Jupiter. All of these missions were undertaken by the National Aeronautics and Space Administration (NASA), and all but two were flybys taking detailed observations without landing or entering orbit. These probes make Jupiter the most visited of the Solar System's outer planets as all missions to the outer Solar System have used Jupiter flybys. On 5 July 2016, spacecraft Juno arrived and entered the planet's orbit—the second craft ever to do so. Sending a craft to Jupiter is difficult, mostly due to large fuel requirements and the effects of the planet's harsh radiation environment.

<span class="mw-page-title-main">Exploration of Io</span> Overview of the exploration of Io, Jupiters innermost Galilean and third-largest moon

The exploration of Io, Jupiter's innermost Galilean and third-largest moon, began with its discovery in 1610 and continues today with Earth-based observations and visits by spacecraft to the Jupiter system. Italian astronomer Galileo Galilei was the first to record an observation of Io on January 8, 1610, though Simon Marius may have also observed Io at around the same time. During the 17th century, observations of Io and the other Galilean satellites helped with the measurement of longitude by map makers and surveyors, with validation of Kepler's Third Law of planetary motion, and with measurement of the speed of light. Based on ephemerides produced by astronomer Giovanni Cassini and others, Pierre-Simon Laplace created a mathematical theory to explain the resonant orbits of three of Jupiter's moons, Io, Europa, and Ganymede. This resonance was later found to have a profound effect on the geologies of these moons. Improved telescope technology in the late 19th and 20th centuries allowed astronomers to resolve large-scale surface features on Io as well as to estimate its diameter and mass.

<i>Family Portrait</i> (<i>MESSENGER</i>) Photograph of the Solar System taken by MESSENGER spacecraft

The Solar System Family Portrait is an image of many of the Solar System's planets and moons acquired by MESSENGER during November 2010 from approximately the orbit of Mercury. The mosaic is intended to be complementary to the Voyager 1's Family Portrait acquired from the outer edge of the Solar System on February 14, 1990.

<span class="mw-page-title-main">Solar eclipses on Saturn</span> When moons of Saturn pass before the Sun

Solar eclipses on Saturn occur when the natural satellites of Saturn pass in front of the Sun as seen from Saturn. These eclipses happen fairly often. For example, some of Saturn's moons can have a solar eclipse every day depending on the saturnian season.

<span class="mw-page-title-main">Outline of the Solar System</span> Overview of and topical guide to the Solar System

The following outline is provided as an overview of and topical guide to the Solar System:

The following outline is provided as an overview of and topical guide to Jupiter:

In astronomy, planetary transits and occultations occur when a planet passes in front of another object, as seen by an observer. The occulted object may be a distant star, but in rare cases it may be another planet, in which case the event is called a mutual planetary occultation or mutual planetary transit, depending on the relative apparent diameters of the objects.

Tianwen-4, formerly known as Gan De, is a planned interplanetary mission by China to study the Jovian system and its environs, sharing a launch with a spacecraft which will make a flyby of Uranus.

References

  1. "NASA's Juno Mission Checks Out Epic Io Eclipse on Jupiter | Space". www.space.com. 17 September 2019. Retrieved 2020-12-29.
  2. "Shadows on Jupiter Cast by the Galilean Moons". Sydney Observatory. 2010. Archived from the original on 2014-05-08. Retrieved 2014-05-07.