Solar eclipse of October 12, 1958 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | −0.2951 |
Magnitude | 1.0608 |
Maximum eclipse | |
Duration | 311 s (5 min 11 s) |
Coordinates | 24°00′S142°24′W / 24°S 142.4°W |
Max. width of band | 209 km (130 mi) |
Times (UTC) | |
Greatest eclipse | 20:55:28 |
References | |
Saros | 133 (42 of 72) |
Catalog # (SE5000) | 9417 |
A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, [1] with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 5.5 hours before perigee (on October 13, 1958, at 2:30 UTC), the Moon's apparent diameter was larger. [2]
Totality was visible in Tokelau, Cook Islands, French Polynesia, Chile and Argentina. A partial eclipse was visible for parts of Eastern Australia, Oceania, and western South America.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1958 October 12 at 18:20:31.5 UTC |
First Umbral External Contact | 1958 October 12 at 19:15:58.5 UTC |
First Central Line | 1958 October 12 at 19:17:11.0 UTC |
First Umbral Internal Contact | 1958 October 12 at 19:18:23.5 UTC |
First Penumbral Internal Contact | 1958 October 12 at 20:18:33.1 UTC |
Ecliptic Conjunction | 1958 October 12 at 20:52:27.4 UTC |
Greatest Eclipse | 1958 October 12 at 20:55:28.0 UTC |
Greatest Duration | 1958 October 12 at 20:57:26.1 UTC |
Equatorial Conjunction | 1958 October 12 at 21:04:31.8 UTC |
Last Penumbral Internal Contact | 1958 October 12 at 21:32:08.7 UTC |
Last Umbral Internal Contact | 1958 October 12 at 22:32:25.5 UTC |
Last Central Line | 1958 October 12 at 22:33:38.3 UTC |
Last Umbral External Contact | 1958 October 12 at 22:34:51.1 UTC |
Last Penumbral External Contact | 1958 October 12 at 23:30:19.6 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 1.06084 |
Eclipse Obscuration | 1.12539 |
Gamma | −0.29506 |
Sun Right Ascension | 13h10m12.6s |
Sun Declination | -07°27'01.0" |
Sun Semi-Diameter | 16'01.8" |
Sun Equatorial Horizontal Parallax | 08.8" |
Moon Right Ascension | 13h09m51.7s |
Moon Declination | -07°44'19.9" |
Moon Semi-Diameter | 16'43.7" |
Moon Equatorial Horizontal Parallax | 1°01'23.7" |
ΔT | 32.6 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
October 12 Ascending node (new moon) | October 27 Descending node (full moon) |
---|---|
Total solar eclipse Solar Saros 133 | Penumbral lunar eclipse Lunar Saros 145 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]
Solar eclipse series sets from 1957 to 1960 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | April 30, 1957 Annular (non-central) | 0.9992 | 123 | October 23, 1957 Total (non-central) | 1.0022 | |
128 | April 19, 1958 Annular | 0.275 | 133 | October 12, 1958 Total | −0.2951 | |
138 | April 8, 1959 Annular | −0.4546 | 143 | October 2, 1959 Total | 0.4207 | |
148 | March 27, 1960 Partial | −1.1537 | 153 | September 20, 1960 Partial | 1.2057 |
This eclipse is a part of Saros series 133, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on July 13, 1219. It contains annular eclipses from November 20, 1435 through January 13, 1526; a hybrid eclipse on January 24, 1544; and total eclipses from February 3, 1562 through June 21, 2373. The series ends at member 72 as a partial eclipse on September 5, 2499. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 25 at 1 minutes, 14 seconds on November 30, 1453, and the longest duration of totality was produced by member 61 at 6 minutes, 50 seconds on August 7, 1850. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]
Series members 34–55 occur between 1801 and 2200: | ||
---|---|---|
34 | 35 | 36 |
July 17, 1814 | July 27, 1832 | August 7, 1850 |
37 | 38 | 39 |
August 18, 1868 | August 29, 1886 | September 9, 1904 |
40 | 41 | 42 |
September 21, 1922 | October 1, 1940 | October 12, 1958 |
43 | 44 | 45 |
October 23, 1976 | November 3, 1994 | November 13, 2012 |
46 | 47 | 48 |
November 25, 2030 | December 5, 2048 | December 17, 2066 |
49 | 50 | 51 |
December 27, 2084 | January 8, 2103 | January 19, 2121 |
52 | 53 | 54 |
January 30, 2139 | February 9, 2157 | February 21, 2175 |
55 | ||
March 3, 2193 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
22 eclipse events between December 24, 1916 and July 31, 2000 | ||||
---|---|---|---|---|
December 24–25 | October 12 | July 31–August 1 | May 19–20 | March 7 |
111 | 113 | 115 | 117 | 119 |
December 24, 1916 | July 31, 1924 | May 19, 1928 | March 7, 1932 | |
121 | 123 | 125 | 127 | 129 |
December 25, 1935 | October 12, 1939 | August 1, 1943 | May 20, 1947 | March 7, 1951 |
131 | 133 | 135 | 137 | 139 |
December 25, 1954 | October 12, 1958 | July 31, 1962 | May 20, 1966 | March 7, 1970 |
141 | 143 | 145 | 147 | 149 |
December 24, 1973 | October 12, 1977 | July 31, 1981 | May 19, 1985 | March 7, 1989 |
151 | 153 | 155 | ||
December 24, 1992 | October 12, 1996 | July 31, 2000 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
December 21, 1805 (Saros 119) | November 19, 1816 (Saros 120) | October 20, 1827 (Saros 121) | September 18, 1838 (Saros 122) | August 18, 1849 (Saros 123) |
July 18, 1860 (Saros 124) | June 18, 1871 (Saros 125) | May 17, 1882 (Saros 126) | April 16, 1893 (Saros 127) | March 17, 1904 (Saros 128) |
February 14, 1915 (Saros 129) | January 14, 1926 (Saros 130) | December 13, 1936 (Saros 131) | November 12, 1947 (Saros 132) | October 12, 1958 (Saros 133) |
September 11, 1969 (Saros 134) | August 10, 1980 (Saros 135) | July 11, 1991 (Saros 136) | June 10, 2002 (Saros 137) | May 10, 2013 (Saros 138) |
April 8, 2024 (Saros 139) | March 9, 2035 (Saros 140) | February 5, 2046 (Saros 141) | January 5, 2057 (Saros 142) | December 6, 2067 (Saros 143) |
November 4, 2078 (Saros 144) | October 4, 2089 (Saros 145) | September 4, 2100 (Saros 146) | August 4, 2111 (Saros 147) | July 4, 2122 (Saros 148) |
June 3, 2133 (Saros 149) | May 3, 2144 (Saros 150) | April 2, 2155 (Saros 151) | March 2, 2166 (Saros 152) | January 29, 2177 (Saros 153) |
December 29, 2187 (Saros 154) | November 28, 2198 (Saros 155) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
January 21, 1814 (Saros 128) | December 31, 1842 (Saros 129) | December 12, 1871 (Saros 130) |
November 22, 1900 (Saros 131) | November 1, 1929 (Saros 132) | October 12, 1958 (Saros 133) |
September 23, 1987 (Saros 134) | September 1, 2016 (Saros 135) | August 12, 2045 (Saros 136) |
July 24, 2074 (Saros 137) | July 4, 2103 (Saros 138) | June 13, 2132 (Saros 139) |
May 25, 2161 (Saros 140) | May 4, 2190 (Saros 141) |
A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, August 23 and Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 hours before perigee, the Moon's apparent diameter will be larger. Perigee did occur near the very end of this eclipse.
A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 25, 2030, with a magnitude of 1.0468. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 14 hours before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit between Thursday, December 16 and Friday, December 17, 2066, with a magnitude of 1.0416. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 18.5 hours before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 23, 1976, with a magnitude of 1.0572. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 9 hours before perigee, the Moon's apparent diameter was larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 23, 1957, with a magnitude of 1.0013. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.4 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit between Monday, September 11, 1950 and Tuesday, September 12, 1950, with a magnitude of 1.0182. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's descending node of orbit between Tuesday, December 25 and Wednesday, December 26, 2057, with a magnitude of 1.0348. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 6.5 hours before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.2 days after apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, October 3 and Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, November 30, 1853, with a magnitude of 1.0485. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 8.5 hours before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, June 26 and Sunday, June 27, 1824, with a magnitude of 1.0578. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days before perigee, the Moon's apparent diameter was larger.