Solar eclipse of November 22, 1984

Last updated
Solar eclipse of November 22, 1984
Solar eclipse of 22 November 1984.JPG
Partial from Gisborne, New Zealand
SE1984Nov22T.png
Map
Type of eclipse
NatureTotal
Gamma −0.3132
Magnitude 1.0237
Maximum eclipse
Duration120 s (2 min 0 s)
Coordinates 37°48′S173°36′W / 37.8°S 173.6°W / -37.8; -173.6
Max. width of band85 km (53 mi)
Times (UTC)
Greatest eclipse22:54:17
References
Saros 142 (21 of 72)
Catalog # (SE5000) 9475

A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, November 22 and Friday, November 23, 1984, [1] with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days after perigee (on November 20, 1984, at 20:50 UTC), the Moon's apparent diameter was larger. [2]

Contents

Totality was visible in Indonesia, Papua New Guinea and southern Pacific Ocean. West of the International Date Line the eclipse took place on November 23, including all land in the path of totality. A partial eclipse was visible for parts of Indonesia, Australia, Oceania, Antarctica, and extreme southern South America.

Observations

Jay Pasachoff led an observation team from Williams College in Massachusetts to Papua New Guinea, taking images of the process of the eclipse and the corona, as well as the Baily's beads and the illuminance of the corona. Besides the observations, the team members also went to places near the Sepik River in northern Papua New Guinea. [3]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [4]

November 22, 1984 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1984 November 22 at 20:14:19.4 UTC
First Umbral External Contact1984 November 22 at 21:13:34.5 UTC
First Central Line1984 November 22 at 21:13:48.2 UTC
First Umbral Internal Contact1984 November 22 at 21:14:01.9 UTC
First Penumbral Internal Contact1984 November 22 at 22:19:19.9 UTC
Greatest Eclipse1984 November 22 at 22:54:16.8 UTC
Greatest Duration1984 November 22 at 22:55:25.9 UTC
Ecliptic Conjunction1984 November 22 at 22:57:34.7 UTC
Equatorial Conjunction1984 November 22 at 23:04:48.0 UTC
Last Penumbral Internal Contact1984 November 22 at 23:28:57.9 UTC
Last Umbral Internal Contact1984 November 23 at 00:34:27.7 UTC
Last Central Line1984 November 23 at 00:34:39.2 UTC
Last Umbral External Contact1984 November 23 at 00:34:50.7 UTC
Last Penumbral External Contact1984 November 23 at 01:34:14.6 UTC
November 22, 1984 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.02368
Eclipse Obscuration1.04792
Gamma−0.31318
Sun Right Ascension15h54m44.1s
Sun Declination-20°19'37.3"
Sun Semi-Diameter16'11.9"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension15h54m19.9s
Moon Declination-20°37'27.2"
Moon Semi-Diameter16'19.2"
Moon Equatorial Horizontal Parallax0°59'53.7"
ΔT54.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of November 1984
November 8
Ascending node (full moon)
November 22
Descending node (new moon)
Lunar eclipse chart close-1984Nov08.png SE1984Nov22T.png
Penumbral lunar eclipse
Lunar Saros 116
Annular solar eclipse
Solar Saros 142

Eclipses in 1984

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 142

Inex

Triad

Solar eclipses of 1982–1985

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]

The partial solar eclipses on January 25, 1982 and July 20, 1982 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1982 to 1985
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 June 21, 1982
SE1982Jun21P.png
Partial
−1.2102122 December 15, 1982
SE1982Dec15P.png
Partial
1.1293
127 June 11, 1983
SE1983Jun11T.png
Total
−0.4947132 December 4, 1983
SE1983Dec04A.png
Annular
0.4015
137 May 30, 1984
SE1984May30A.png
Annular
0.2755142
Solar eclipse of 22 November 1984.JPG
Partial in Gisborne,
New Zealand
November 22, 1984
SE1984Nov22T.png
Total
−0.3132
147 May 19, 1985
SE1985May19P.png
Partial
1.072152 November 12, 1985
SE1985Nov12T.png
Total
−0.9795

Saros 142

This eclipse is a part of Saros series 142, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on April 17, 1624. It contains a hybrid eclipse on July 14, 1768, and total eclipses from July 25, 1786 through October 29, 2543. There are no annular eclipses in this set. The series ends at member 72 as a partial eclipse on June 5, 2904. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 38 at 6 minutes, 34 seconds on May 28, 2291. All eclipses in this series occur at the Moon’s descending node of orbit. [6]

Series members 11–32 occur between 1801 and 2200:
111213
SE1804Aug05T.png
August 5, 1804
SE1822Aug16T.png
August 16, 1822
SE1840Aug27T.png
August 27, 1840
141516
SE1858Sep07T.png
September 7, 1858
SE1876Sep17T.png
September 17, 1876
SE1894Sep29T.png
September 29, 1894
171819
SE1912Oct10T.png
October 10, 1912
SE1930Oct21T.png
October 21, 1930
SE1948Nov01T.png
November 1, 1948
202122
SE1966Nov12T.png
November 12, 1966
SE1984Nov22T.png
November 22, 1984
SE2002Dec04T.png
December 4, 2002
232425
SE2020Dec14T.png
December 14, 2020
SE2038Dec26T.png
December 26, 2038
SE2057Jan05T.png
January 5, 2057
262728
SE2075Jan16T.png
January 16, 2075
SE2093Jan27T.png
January 27, 2093
SE2111Feb08T.png
February 8, 2111
293031
SE2129Feb18T.png
February 18, 2129
SE2147Mar02T.png
March 2, 2147
SE2165Mar12T.png
March 12, 2165
32
SE2183Mar23T.png
March 23, 2183

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011
September 11–12June 30–July 1April 17–19February 4–5November 22–23
114116118120122
SE1931Sep12P.png
September 12, 1931
SE1935Jun30P.png
June 30, 1935
SE1939Apr19A.png
April 19, 1939
SE1943Feb04T.png
February 4, 1943
SE1946Nov23P.png
November 23, 1946
124126128130132
SE1950Sep12T.png
September 12, 1950
SE1954Jun30T.png
June 30, 1954
SE1958Apr19A.png
April 19, 1958
SE1962Feb05T.png
February 5, 1962
SE1965Nov23A.png
November 23, 1965
134136138140142
SE1969Sep11A.png
September 11, 1969
SE1973Jun30T.png
June 30, 1973
SE1977Apr18A.png
April 18, 1977
SE1981Feb04A.png
February 4, 1981
SE1984Nov22T.png
November 22, 1984
144146148150152
SE1988Sep11A.png
September 11, 1988
SE1992Jun30T.png
June 30, 1992
SE1996Apr17P.png
April 17, 1996
SE2000Feb05P.png
February 5, 2000
SE2003Nov23T.png
November 23, 2003
154156
SE2007Sep11P.png
September 11, 2007
SE2011Jul01P.png
July 1, 2011

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1810Apr04A.gif
April 4, 1810
(Saros 126)
SE1821Mar04T.gif
March 4, 1821
(Saros 127)
SE1832Feb01A.gif
February 1, 1832
(Saros 128)
SE1842Dec31A.gif
December 31, 1842
(Saros 129)
SE1853Nov30T.png
November 30, 1853
(Saros 130)
SE1864Oct30A.gif
October 30, 1864
(Saros 131)
SE1875Sep29A.gif
September 29, 1875
(Saros 132)
SE1886Aug29T.png
August 29, 1886
(Saros 133)
SE1897Jul29A.gif
July 29, 1897
(Saros 134)
SE1908Jun28A.png
June 28, 1908
(Saros 135)
SE1919May29T.png
May 29, 1919
(Saros 136)
SE1930Apr28H.png
April 28, 1930
(Saros 137)
SE1941Mar27A.png
March 27, 1941
(Saros 138)
SE1952Feb25T.png
February 25, 1952
(Saros 139)
SE1963Jan25A.png
January 25, 1963
(Saros 140)
SE1973Dec24A.png
December 24, 1973
(Saros 141)
SE1984Nov22T.png
November 22, 1984
(Saros 142)
SE1995Oct24T.png
October 24, 1995
(Saros 143)
SE2006Sep22A.png
September 22, 2006
(Saros 144)
SE2017Aug21T.png
August 21, 2017
(Saros 145)
SE2028Jul22T.png
July 22, 2028
(Saros 146)
SE2039Jun21A.png
June 21, 2039
(Saros 147)
SE2050May20H.png
May 20, 2050
(Saros 148)
SE2061Apr20T.png
April 20, 2061
(Saros 149)
SE2072Mar19P.png
March 19, 2072
(Saros 150)
SE2083Feb16P.png
February 16, 2083
(Saros 151)
SE2094Jan16T.png
January 16, 2094
(Saros 152)
Saros153 14van70 SE2104Dec17A.jpg
December 17, 2104
(Saros 153)
SE2115Nov16A.png
November 16, 2115
(Saros 154)
SE2126Oct16T.png
October 16, 2126
(Saros 155)
Saros156 08van69 SE2137Sep15P.jpg
September 15, 2137
(Saros 156)
Saros157 06van70 SE2148Aug14P.jpg
August 14, 2148
(Saros 157)
Saros158 06van70 SE2159Jul15P.jpg
July 15, 2159
(Saros 158)
Saros159 03van70 SE2170Jun14P.jpg
June 14, 2170
(Saros 159)
Saros160 01van71 SE2181May13P.jpg
May 13, 2181
(Saros 160)
Saros161 02van72 SE2192Apr12P.jpg
April 12, 2192
(Saros 161)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1811Mar24T.gif
March 24, 1811
(Saros 136)
SE1840Mar04A.gif
March 4, 1840
(Saros 137)
SE1869Feb11A.gif
February 11, 1869
(Saros 138)
SE1898Jan22T.png
January 22, 1898
(Saros 139)
SE1927Jan03A.png
January 3, 1927
(Saros 140)
SE1955Dec14A.png
December 14, 1955
(Saros 141)
SE1984Nov22T.png
November 22, 1984
(Saros 142)
SE2013Nov03H.png
November 3, 2013
(Saros 143)
SE2042Oct14A.png
October 14, 2042
(Saros 144)
SE2071Sep23T.png
September 23, 2071
(Saros 145)
SE2100Sep04T.png
September 4, 2100
(Saros 146)
SE2129Aug15A.png
August 15, 2129
(Saros 147)
SE2158Jul25T.png
July 25, 2158
(Saros 148)
Saros149 30van71 SE2187Jul06T.jpg
July 6, 2187
(Saros 149)

Notes

  1. "November 22–23, 1984 Total Solar Eclipse". timeanddate. Retrieved 9 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 9 August 2024.
  3. "1984, Papua New Guinea". Williams College. Archived from the original on 27 September 2020.
  4. "Total Solar Eclipse of 1984 Nov 22". EclipseWise.com. Retrieved 9 August 2024.
  5. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. "NASA - Catalog of Solar Eclipses of Saros 142". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 5, 1962</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Monday, February 5, 1962, with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 21.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 22, 2096</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 13 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of June 11, 1983</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, June 11, 1983, with a magnitude of 1.0524. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1940</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 1, 1940, with a magnitude of 1.0645. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of September 9, 1904</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, September 9, 1904, with a magnitude of 1.0709. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of November 12, 1966</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, November 12, 1966, with a magnitude of 1.0234. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.25 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 8, 1959</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, April 8, 1959, with a magnitude of 0.9401. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.9 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of November 25, 2049</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, November 25, 2049, with a magnitude of 1.0057. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 4, 2100</span> Total solar eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, September 4, 2100, with a magnitude of 1.0402. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 days before perigee, the Moon's apparent diameter will be larger. This will be the last solar eclipse of the 21st century.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.4 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 23, 2071</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, October 3 and Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 16, 1893</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, April 16, 1893, with a magnitude of 1.0556. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 23, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 23, 1908, with a magnitude of 1.0024. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 25, 1944</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, January 25, 1944, with a magnitude of 1.0428. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 20 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 29, 1886</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 29, 1886, with a magnitude of 1.0735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 25, 1857</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Wednesday, March 25 and Thursday, March 26, 1857, with a magnitude of 1.0534. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.

References