Solar eclipse of February 15, 1961

Last updated
Solar eclipse of February 15, 1961
1961 Total Solar Eclipse.jpg
Totality of eclipse
SE1961Feb15T.png
Map
Type of eclipse
NatureTotal
Gamma 0.883
Magnitude 1.036
Maximum eclipse
Duration165 s (2 min 45 s)
Coordinates 47°24′N40°00′E / 47.4°N 40°E / 47.4; 40
Max. width of band258 km (160 mi)
Times (UTC)
Greatest eclipse8:19:48
References
Saros 120 (58 of 71)
Catalog # (SE5000) 9422

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, February 15, 1961, [1] with a magnitude of 1.036. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 21 hours after perigee (on February 14, 1961, at 11:30 UTC), the Moon's apparent diameter was larger. [2]

Contents

Totality was visible from France, Monaco, Italy, San Marino, SFR Yugoslavia (parts now belonging to Croatia, Bosnia and Herzegovina, Montenegro, Serbia and Kosovo, North Macedonia), Albania, Bulgaria including the capital city Sofia, Romania including the capital city Bucharest, and the Soviet Union (parts now belonging to Ukraine, Russia and Kazakhstan). The maximum eclipse was recorded near Novocherkassk (Russian SFSR). A partial eclipse was visible for parts of Europe, North Africa, Northeast Africa, West Asia, Central Asia, and South Asia.

Observation

A team from the University of Texas observed the total eclipse in Pisa, Italy, mostly studying the solar irradiance with a wavelength below 1 centimeter. At that time, coronagraphs had already allowed coronal observation in the visible light band so it could be observed at any time, not just during total solar eclipses, but instruments allowing millimeter-wave band observations were still lacking. Therefore, it was still necessary to make such observations during a total solar eclipse. [3] Arcetri Observatory in Florence, Italy also made observations. [4]

The scene for the film Barabbas (1961) in which the eclipse was used to recreate the crucifixion darkness Barabba Eclisse 1961.jpg
The scene for the film Barabbas (1961) in which the eclipse was used to recreate the crucifixion darkness

The crucifixion scene in the 1961 film Barabbas was shot during this eclipse. [5]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [6]

February 15, 1961 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1961 February 15 at 06:09:22.0 UTC
First Umbral External Contact1961 February 15 at 07:29:58.3 UTC
First Central Line1961 February 15 at 07:31:35.6 UTC
First Umbral Internal Contact1961 February 15 at 07:33:15.5 UTC
Ecliptic Conjunction1961 February 15 at 08:10:53.4 UTC
Greatest Duration1961 February 15 at 08:18:50.8 UTC
Greatest Eclipse1961 February 15 at 08:19:48.3 UTC
Equatorial Conjunction1961 February 15 at 08:43:06.4 UTC
Last Umbral Internal Contact1961 February 15 at 09:06:05.1 UTC
Last Central Line1961 February 15 at 09:07:44.1 UTC
Last Umbral External Contact1961 February 15 at 09:09:20.5 UTC
Last Penumbral External Contact1961 February 15 at 10:30:05.6 UTC
February 15, 1961 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.03604
Eclipse Obscuration1.07339
Gamma0.88302
Sun Right Ascension21h54m38.6s
Sun Declination-12°42'31.9"
Sun Semi-Diameter16'11.4"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension21h53m44.3s
Moon Declination-11°50'22.7"
Moon Semi-Diameter16'38.8"
Moon Equatorial Horizontal Parallax1°01'05.5"
ΔT33.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of February–March 1961
February 15
Descending node (new moon)
March 2
Ascending node (full moon)
SE1961Feb15T.png Lunar eclipse chart close-1961Mar02.png
Total solar eclipse
Solar Saros 120
Partial lunar eclipse
Lunar Saros 132

Eclipses in 1961

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 120

Inex

Triad

Solar eclipses of 1961–1964

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [7]

The partial solar eclipses on June 10, 1964 and December 4, 1964 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1961 to 1964
Descending node Ascending node
SarosMapGammaSarosMapGamma
120
1961 Total Solar Eclipse.jpg
February 15, 1961
SE1961Feb15T.png
Total
0.883125 August 11, 1961
SE1961Aug11A.png
Annular
−0.8859
130 February 5, 1962
SE1962Feb05T.png
Total
0.2107135 July 31, 1962
SE1962Jul31A.png
Annular
−0.113
140 January 25, 1963
SE1963Jan25A.png
Annular
−0.4898145 July 20, 1963
SE1963Jul20T.png
Total
0.6571
150 January 14, 1964
SE1964Jan14P.png
Partial
−1.2354155 July 9, 1964
SE1964Jul09P.png
Partial
1.3623

Saros 120

This eclipse is a part of Saros series 120, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 27, 933 AD. It contains annular eclipses from August 11, 1059 through April 26, 1492; hybrid eclipses from May 8, 1510 through June 8, 1564; and total eclipses from June 20, 1582 through March 30, 2033. The series ends at member 71 as a partial eclipse on July 7, 2195. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 11 at 6 minutes, 24 seconds on September 11, 1113, and the longest duration of totality was produced by member 60 at 2 minutes, 50 seconds on March 9, 1997. All eclipses in this series occur at the Moon’s descending node of orbit. [8]

Series members 50–71 occur between 1801 and 2195:
505152
SE1816Nov19T.gif
November 19, 1816
SE1834Nov30T.gif
November 30, 1834
SE1852Dec11T.gif
December 11, 1852
535455
SE1870Dec22T.gif
December 22, 1870
SE1889Jan01T.png
January 1, 1889
SE1907Jan14T.png
January 14, 1907
565758
SE1925Jan24T.png
January 24, 1925
SE1943Feb04T.png
February 4, 1943
SE1961Feb15T.png
February 15, 1961
596061
SE1979Feb26T.png
February 26, 1979
SE1997Mar09T.png
March 9, 1997
SE2015Mar20T.png
March 20, 2015
626364
SE2033Mar30T.png
March 30, 2033
SE2051Apr11P.png
April 11, 2051
SE2069Apr21P.png
April 21, 2069
656667
SE2087May02P.png
May 2, 2087
Saros120 66van71 SE2105May14P.jpg
May 14, 2105
Saros120 67van71 SE2123May25P.jpg
May 25, 2123
686970
Saros120 68van71 SE2141Jun04P.jpg
June 4, 2141
Saros120 69van71 SE2159Jun16P.jpg
June 16, 2159
Saros120 70van71 SE2177Jun26P.jpg
June 26, 2177
71
Saros120 71van71 SE2195Jul07P.jpg
July 7, 2195

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 11, 1953 and July 11, 2029
July 10–11April 29–30February 15–16December 4September 21–23
116118120122124
SE1953Jul11P.png
July 11, 1953
SE1957Apr30A.png
April 30, 1957
SE1961Feb15T.png
February 15, 1961
SE1964Dec04P.png
December 4, 1964
SE1968Sep22T.png
September 22, 1968
126128130132134
SE1972Jul10T.png
July 10, 1972
SE1976Apr29A.png
April 29, 1976
SE1980Feb16T.png
February 16, 1980
SE1983Dec04A.png
December 4, 1983
SE1987Sep23A.png
September 23, 1987
136138140142144
SE1991Jul11T.png
July 11, 1991
SE1995Apr29A.png
April 29, 1995
SE1999Feb16A.png
February 16, 1999
SE2002Dec04T.png
December 4, 2002
SE2006Sep22A.png
September 22, 2006
146148150152154
SE2010Jul11T.png
July 11, 2010
SE2014Apr29A.png
April 29, 2014
SE2018Feb15P.png
February 15, 2018
SE2021Dec04T.png
December 4, 2021
SE2025Sep21P.png
September 21, 2025
156
SE2029Jul11P.png
July 11, 2029

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1819Mar25P.gif
March 25, 1819
(Saros 107)
SE1830Feb23P.gif
February 23, 1830
(Saros 108)
SE1841Jan22P.gif
January 22, 1841
(Saros 109)
SE1862Nov21P.gif
November 21, 1862
(Saros 111)
SE1895Aug20P.gif
August 20, 1895
(Saros 114)
SE1906Jul21P.png
July 21, 1906
(Saros 115)
SE1917Jun19P.png
June 19, 1917
(Saros 116)
SE1928May19T.png
May 19, 1928
(Saros 117)
SE1939Apr19A.png
April 19, 1939
(Saros 118)
SE1950Mar18A.png
March 18, 1950
(Saros 119)
SE1961Feb15T.png
February 15, 1961
(Saros 120)
SE1972Jan16A.png
January 16, 1972
(Saros 121)
SE1982Dec15P.png
December 15, 1982
(Saros 122)
SE1993Nov13P.png
November 13, 1993
(Saros 123)
SE2004Oct14P.png
October 14, 2004
(Saros 124)
SE2015Sep13P.png
September 13, 2015
(Saros 125)
SE2026Aug12T.png
August 12, 2026
(Saros 126)
SE2037Jul13T.png
July 13, 2037
(Saros 127)
SE2048Jun11A.png
June 11, 2048
(Saros 128)
SE2059May11T.png
May 11, 2059
(Saros 129)
SE2070Apr11T.png
April 11, 2070
(Saros 130)
SE2081Mar10A.png
March 10, 2081
(Saros 131)
SE2092Feb07A.png
February 7, 2092
(Saros 132)
SE2103Jan08T.png
January 8, 2103
(Saros 133)
SE2113Dec08A.png
December 8, 2113
(Saros 134)
SE2124Nov06A.png
November 6, 2124
(Saros 135)
SE2135Oct07T.png
October 7, 2135
(Saros 136)
SE2146Sep06A.png
September 6, 2146
(Saros 137)
SE2157Aug05A.png
August 5, 2157
(Saros 138)
SE2168Jul05T.png
July 5, 2168
(Saros 139)
SE2179Jun05A.png
June 5, 2179
(Saros 140)
SE2190May04A.png
May 4, 2190
(Saros 141)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1816May27A.gif
May 27, 1816
(Saros 115)
SE1845May06An.gif
May 6, 1845
(Saros 116)
SE1874Apr16T.png
April 16, 1874
(Saros 117)
SE1903Mar29A.png
March 29, 1903
(Saros 118)
SE1932Mar07A.png
March 7, 1932
(Saros 119)
SE1961Feb15T.png
February 15, 1961
(Saros 120)
SE1990Jan26A.png
January 26, 1990
(Saros 121)
SE2019Jan06P.png
January 6, 2019
(Saros 122)
SE2047Dec16P.png
December 16, 2047
(Saros 123)
SE2076Nov26P.png
November 26, 2076
(Saros 124)
Saros125 59van73 SE2105Nov06P.jpg
November 6, 2105
(Saros 125)
Saros126 54van72 SE2134Oct17P.jpg
October 17, 2134
(Saros 126)
Saros127 66van82 SE2163Sep28P.jpg
September 28, 2163
(Saros 127)
Saros128 68van73 SE2192Sep06P.jpg
September 6, 2192
(Saros 128)

See also

Notes

  1. "February 15, 1961 Total Solar Eclipse". timeanddate. Retrieved 7 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 7 August 2024.
  3. C. W. Tolbert & A. W. Straiton. "Observations of 4.3-MM Radiation during the Solar Eclipse of February 15, 1961". The Astrophysical Journal . 135: 822–826. Archived from the original on 30 August 2019.
  4. "How Italy Saw The Eclipse (1961)". YouTube. Archived from the original on 27 March 2017.
  5. Elley, Derek (2013). The Epic Film: Myth and History. Routledge. p. 94. ISBN   9781317928874.
  6. "Total Solar Eclipse of 1961 Feb 15". EclipseWise.com. Retrieved 7 August 2024.
  7. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  8. "NASA - Catalog of Solar Eclipses of Saros 120". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 30, 2052</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 30, 2052, with a magnitude of 1.0466. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will cross central Mexico and the southeastern states of the United States. Almost all of North America and the northern edge of South America will see a partial eclipse. It will be the 2nd total eclipse visible from the Florida Panhandle and southwest Georgia in 6.6 years. It will be the first total solar eclipse visible from Solar Saros 130 in 223 synodic months. It will be the last total solar eclipse visible in the United States until May 11, 2078.

<span class="mw-page-title-main">Solar eclipse of March 20, 2034</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, March 20, 2034, with a magnitude of 1.0458. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in 13 countries: from east to west, Benin, Nigeria, Cameroon, Chad, Sudan, Egypt, Saudi Arabia, Kuwait, Iran, Afghanistan, Pakistan, India, and China. The eclipse passes through Iran only a few hours before the vernal Spring equinox, marking the beginning of the Persian New Year.

<span class="mw-page-title-main">Solar eclipse of February 14, 1934</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, February 13 and Wednesday, February 14, 1934, with a magnitude of 1.0321. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.6 days after perigee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, November 22, 1984, with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia, Papua New Guinea and southern Pacific Ocean. West of the International Date Line the eclipse took place on November 23, including all land in the path of totality. Occurring only 2.1 days after perigee, the Moon's apparent diameter was fairly larger.

<span class="mw-page-title-main">Solar eclipse of November 25, 2030</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 25, 2030, with a magnitude of 1.0468. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in Namibia, Botswana, South Africa, Lesotho, and Australia.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1940</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 1, 1940, with a magnitude of 1.0645. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Colombia, Brazil, Venezuela and South Africa.

<span class="mw-page-title-main">Solar eclipse of December 15, 2039</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, December 15, 2039, with a magnitude of 1.0356. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 1972</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, January 16, 1972, with a magnitude of 0.9692. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 7.3 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of August 11, 1961</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 7 hours after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of April 30, 1957</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, April 30, 1957, with a magnitude of 0.9799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.1 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 23, 1957</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 23, 1957, with a magnitude of 1.0013. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.4 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 5, 1954</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, January 5, 1954, with a magnitude of 0.972. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.5 days after apogee and 5.3 days before perigee.

<span class="mw-page-title-main">Solar eclipse of September 12, 1950</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Monday, September 11, 1950 and Tuesday, September 12, 1950, with a magnitude of 1.0182. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 30, 2041</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 30, 2041, with a magnitude of 1.0189. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 9, 2043</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, April 9, 2043, with a magnitude of 1.0095. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 28, 1930</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Monday, April 28, 1930, with a magnitude of 1.0003. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.2 days after apogee and 6 days before perigee.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 31, 1932</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Wednesday, August 31 and Thursday, September 1, 1932, with a magnitude of 1.0257. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3 days before perigee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

References