Solar eclipse of August 2, 2065 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | −1.2759 |
Magnitude | 0.4903 |
Maximum eclipse | |
Coordinates | 62°42′S46°30′E / 62.7°S 46.5°E |
Times (UTC) | |
Greatest eclipse | 5:34:17 |
References | |
Saros | 156 (4 of 69) |
Catalog # (SE5000) | 9653 |
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, [1] with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
This will be the third of four partial solar eclipses in 2065, with the others occurring on February 5, July 3, and December 27.
The partial solar eclipse will be visible for parts of eastern South Africa, southern Madagascar, and Antarctica.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2065 August 02 at 03:55:46.2 UTC |
Greatest Eclipse | 2065 August 02 at 05:34:16.6 UTC |
Ecliptic Conjunction | 2065 August 02 at 05:47:56.2 UTC |
Equatorial Conjunction | 2065 August 02 at 06:29:36.9 UTC |
Last Penumbral External Contact | 2065 August 02 at 07:12:19.3 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.49029 |
Eclipse Obscuration | 0.37827 |
Gamma | −1.27584 |
Sun Right Ascension | 08h51m52.4s |
Sun Declination | +17°35'43.5" |
Sun Semi-Diameter | 15'45.5" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 08h50m03.4s |
Moon Declination | +16°28'16.4" |
Moon Semi-Diameter | 15'28.9" |
Moon Equatorial Horizontal Parallax | 0°56'49.3" |
ΔT | 94.3 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
July 3 Descending node (new moon) | July 17 Ascending node (full moon) | August 2 Descending node (new moon) |
---|---|---|
Partial solar eclipse Solar Saros 118 | Total lunar eclipse Lunar Saros 130 | Partial solar eclipse Solar Saros 156 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]
The partial solar eclipses on July 3, 2065 and December 27, 2065 occur in the next lunar year eclipse set.
Solar eclipse series sets from 2062 to 2065 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
121 | March 11, 2062 Partial | −1.0238 | 126 | September 3, 2062 Partial | 1.0191 | |
131 | February 28, 2063 Annular | −0.336 | 136 | August 24, 2063 Total | 0.2771 | |
141 | February 17, 2064 Annular | 0.3597 | 146 | August 12, 2064 Total | −0.4652 | |
151 | February 5, 2065 Partial | 1.0336 | 156 | August 2, 2065 Partial | −1.2759 |
This eclipse is a part of Saros series 156, repeating every 18 years, 11 days, and containing 69 events. The series started with a partial solar eclipse on July 1, 2011. It contains annular eclipses from September 26, 2155 through April 7, 3075. There are no hybrid or total eclipses in this set. The series ends at member 69 as a partial eclipse on July 14, 3237. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 29 at 8 minutes, 28 seconds on May 3, 2516. All eclipses in this series occur at the Moon’s descending node of orbit. [4]
Series members 1–11 occur between 2011 and 2200: | ||
---|---|---|
1 | 2 | 3 |
July 1, 2011 | July 11, 2029 | July 22, 2047 |
4 | 5 | 6 |
August 2, 2065 | August 13, 2083 | August 24, 2101 |
7 | 8 | 9 |
September 5, 2119 | September 15, 2137 | September 26, 2155 |
10 | 11 | |
October 7, 2173 | October 18, 2191 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
21 eclipse events between May 21, 1993 and May 20, 2069 | ||||
---|---|---|---|---|
May 20–21 | March 9 | December 25–26 | October 13–14 | August 1–2 |
118 | 120 | 122 | 124 | 126 |
May 21, 1993 | March 9, 1997 | December 25, 2000 | October 14, 2004 | August 1, 2008 |
128 | 130 | 132 | 134 | 136 |
May 20, 2012 | March 9, 2016 | December 26, 2019 | October 14, 2023 | August 2, 2027 |
138 | 140 | 142 | 144 | 146 |
May 21, 2031 | March 9, 2035 | December 26, 2038 | October 14, 2042 | August 2, 2046 |
148 | 150 | 152 | 154 | 156 |
May 20, 2050 | March 9, 2054 | December 26, 2057 | October 13, 2061 | August 2, 2065 |
158 | ||||
May 20, 2069 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2087 | ||||
---|---|---|---|---|
August 17, 1803 (Saros 132) | July 17, 1814 (Saros 133) | June 16, 1825 (Saros 134) | May 15, 1836 (Saros 135) | April 15, 1847 (Saros 136) |
March 15, 1858 (Saros 137) | February 11, 1869 (Saros 138) | January 11, 1880 (Saros 139) | December 12, 1890 (Saros 140) | November 11, 1901 (Saros 141) |
October 10, 1912 (Saros 142) | September 10, 1923 (Saros 143) | August 10, 1934 (Saros 144) | July 9, 1945 (Saros 145) | June 8, 1956 (Saros 146) |
May 9, 1967 (Saros 147) | April 7, 1978 (Saros 148) | March 7, 1989 (Saros 149) | February 5, 2000 (Saros 150) | January 4, 2011 (Saros 151) |
December 4, 2021 (Saros 152) | November 3, 2032 (Saros 153) | October 3, 2043 (Saros 154) | September 2, 2054 (Saros 155) | August 2, 2065 (Saros 156) |
July 1, 2076 (Saros 157) | June 1, 2087 (Saros 158) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
January 30, 1805 (Saros 147) | January 9, 1834 (Saros 148) | December 21, 1862 (Saros 149) |
December 1, 1891 (Saros 150) | November 10, 1920 (Saros 151) | October 21, 1949 (Saros 152) |
October 2, 1978 (Saros 153) | September 11, 2007 (Saros 154) | August 21, 2036 (Saros 155) |
August 2, 2065 (Saros 156) | July 12, 2094 (Saros 157) | June 23, 2123 (Saros 158) |
June 3, 2152 (Saros 159) | May 13, 2181 (Saros 160) |
A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 11, 2062, with a magnitude of 0.9331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 5, 2065, with a magnitude of 0.9123. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 27, 2065, with a magnitude of 0.8769. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, November 24, 2068, with a magnitude of 0.9109. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, May 20, 2069, with a magnitude of 0.0879. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 15, 2069, with a magnitude of 0.5298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, February 7, 2073, with a magnitude of 0.6768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, June 1, 2076, with a magnitude of 0.2897. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, November 26, 2076, with a magnitude of 0.7315. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, February 16, 2083, with a magnitude of 0.9433. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, December 7, 2094, with a magnitude of 0.7046. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It will be visible across North America.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 12, 2094, with a magnitude of 0.4224. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, January 7, 2084, with a magnitude of 0.8723. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.