Solar eclipse of August 29, 1867

Last updated
Solar eclipse of August 29, 1867
SE1867Aug29T.png
Map
Type of eclipse
NatureTotal
Gamma −0.794
Magnitude 1.0344
Maximum eclipse
Duration171 s (2 min 51 s)
Coordinates 41°06′S34°54′W / 41.1°S 34.9°W / -41.1; -34.9
Max. width of band189 km (117 mi)
Times (UTC)
Greatest eclipse13:13:07
References
Saros 123 (45 of 70)
Catalog # (SE5000) 9205

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, August 29, 1867, with a magnitude of 1.0344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 days after perigee (on August 27, 1867, at 2:00 UTC), the Moon's apparent diameter was larger. [1]

Contents

The path of totality was visible from parts of modern-day Chile, Argentina, and Uruguay. A partial solar eclipse was also visible for parts of South America, Southern Africa, and Antarctica.

Observations

Solar eclipse 1867Aug29-Grosch.png

José J. Vergara and Luis Grosch observed the eclipse from a small hill close to Santiago. [2]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

August 29, 1867 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1867 August 29 at 10:53:07.3 UTC
First Umbral External Contact1867 August 29 at 12:07:39.8 UTC
First Central Line1867 August 29 at 12:08:47.2 UTC
First Umbral Internal Contact1867 August 29 at 12:09:55.3 UTC
Ecliptic Conjunction1867 August 29 at 13:04:53.8 UTC
Greatest Duration1867 August 29 at 13:11:07.4 UTC
Greatest Eclipse1867 August 29 at 13:13:06.8 UTC
Equatorial Conjunction1867 August 29 at 13:37:17.8 UTC
Last Umbral Internal Contact1867 August 29 at 14:16:03.1 UTC
Last Central Line1867 August 29 at 14:17:09.0 UTC
Last Umbral External Contact1867 August 29 at 14:18:14.1 UTC
Last Penumbral External Contact1867 August 29 at 15:32:59.4 UTC
August 29, 1867 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.03443
Eclipse Obscuration1.07005
Gamma−0.79403
Sun Right Ascension10h29m57.6s
Sun Declination+09°25'50.6"
Sun Semi-Diameter15'50.6"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension10h29m05.0s
Moon Declination+08°40'29.6"
Moon Semi-Diameter16'13.7"
Moon Equatorial Horizontal Parallax0°59'33.6"
ΔT3.2 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of August–September 1867
August 29
Ascending node (new moon)
September 14
Descending node (full moon)
SE1867Aug29T.png
Total solar eclipse
Solar Saros 123
Partial lunar eclipse
Lunar Saros 135

Eclipses in 1867

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 123

Inex

Triad

Solar eclipses of 1866–1870

This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipses on April 15, 1866 and October 8, 1866 occur in the previous lunar year eclipse set, and the solar eclipses on June 28, 1870 (partial) and December 22, 1870 (total) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1866 to 1870
Descending node Ascending node
SarosMapGammaSarosMapGamma
108March 16, 1866
SE1866Mar16P.gif
Partial
1.4241113
118March 6, 1867
SE1867Mar06A.gif
Annular
0.7716123 August 29, 1867
SE1867Aug29T.png
Total
−0.7940
128February 23, 1868
SE1868Feb23A.gif
Annular
0.0706133 August 18, 1868
SE1868Aug18T.png
Total
−0.0443
138February 11, 1869
SE1869Feb11A.gif
Annular
−0.6251143 August 7, 1869
SE1869Aug07T.png
Total
0.6960
148January 31, 1870
SE1870Jan31P.gif
Partial
−1.2829153July 28, 1870
SE1870Jul28Pb.gif
Partial
1.5044

Saros 123

This eclipse is a part of Saros series 123, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 29, 1074. It contains annular eclipses from July 2, 1182 through April 19, 1651; hybrid eclipses from April 30, 1669 through May 22, 1705; and total eclipses from June 3, 1723 through October 23, 1957. The series ends at member 70 as a partial eclipse on May 31, 2318. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 19 at 8 minutes, 7 seconds on November 9, 1398, and the longest duration of totality was produced by member 42 at 3 minutes, 27 seconds on July 27, 1813. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 42–63 occur between 1801 and 2200:
424344
SE1813Jul27T.gif
July 27, 1813
SE1831Aug07T.gif
August 7, 1831
SE1849Aug18T.gif
August 18, 1849
454647
SE1867Aug29T.png
August 29, 1867
SE1885Sep08T.png
September 8, 1885
SE1903Sep21T.png
September 21, 1903
484950
SE1921Oct01T.png
October 1, 1921
SE1939Oct12T.png
October 12, 1939
SE1957Oct23T.png
October 23, 1957
515253
SE1975Nov03P.png
November 3, 1975
SE1993Nov13P.png
November 13, 1993
SE2011Nov25P.png
November 25, 2011
545556
SE2029Dec05P.png
December 5, 2029
SE2047Dec16P.png
December 16, 2047
SE2065Dec27P.png
December 27, 2065
575859
SE2084Jan07P.png
January 7, 2084
Saros123 58van70 SE2102Jan19P.jpg
January 19, 2102
Saros123 59van70 SE2120Jan30P.jpg
January 30, 2120
606162
Saros123 60van70 SE2138Feb09P.jpg
February 9, 2138
Saros123 61van70 SE2156Feb21P.jpg
February 21, 2156
Saros123 62van70 SE2174Mar03P.jpg
March 3, 2174
63
Saros123 63van70 SE2192Mar13P.jpg
March 13, 2192

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

25 eclipse events between April 5, 1837 and June 17, 1928
April 5–6January 22–23November 10–11August 28–30June 17–18
107109111113115
SE1837Apr05P.png
April 5, 1837
SE1841Jan22P.gif
January 22, 1841
SE1844Nov10P.gif
November 10, 1844
SE1848Aug28P.gif
August 28, 1848
SE1852Jun17P.gif
June 17, 1852
117119121123125
SE1856Apr05T.gif
April 5, 1856
SE1860Jan23A.gif
January 23, 1860
SE1863Nov11A.gif
November 11, 1863
SE1867Aug29T.gif
August 29, 1867
SE1871Jun18A.gif
June 18, 1871
127129131133135
SE1875Apr06T.gif
April 6, 1875
SE1879Jan22A.gif
January 22, 1879
SE1882Nov10A.gif
November 10, 1882
SE1886Aug29T.png
August 29, 1886
SE1890Jun17A.gif
June 17, 1890
137139141143145
SE1894Apr06H.gif
April 6, 1894
SE1898Jan22T.png
January 22, 1898
SE1901Nov11A.png
November 11, 1901
SE1905Aug30T.png
August 30, 1905
SE1909Jun17H.png
June 17, 1909
147149151153155
SE1913Apr06P.png
April 6, 1913
SE1917Jan23P.png
January 23, 1917
SE1920Nov10P.png
November 10, 1920
SE1924Aug30P.png
August 30, 1924
SE1928Jun17P.png
June 17, 1928

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Mar04T.png
March 4, 1802
(Saros 117)
SE1813Feb01A.gif
February 1, 1813
(Saros 118)
SE1824Jan01A.gif
January 1, 1824
(Saros 119)
SE1834Nov30T.gif
November 30, 1834
(Saros 120)
SE1845Oct30H.png
October 30, 1845
(Saros 121)
SE1856Sep29A.gif
September 29, 1856
(Saros 122)
SE1867Aug29T.png
August 29, 1867
(Saros 123)
SE1878Jul29T.png
July 29, 1878
(Saros 124)
SE1889Jun28A.png
June 28, 1889
(Saros 125)
SE1900May28T.png
May 28, 1900
(Saros 126)
SE1911Apr28T.png
April 28, 1911
(Saros 127)
SE1922Mar28A.png
March 28, 1922
(Saros 128)
SE1933Feb24A.png
February 24, 1933
(Saros 129)
SE1944Jan25T.png
January 25, 1944
(Saros 130)
SE1954Dec25A.png
December 25, 1954
(Saros 131)
SE1965Nov23A.png
November 23, 1965
(Saros 132)
SE1976Oct23T.png
October 23, 1976
(Saros 133)
SE1987Sep23A.png
September 23, 1987
(Saros 134)
SE1998Aug22A.png
August 22, 1998
(Saros 135)
SE2009Jul22T.png
July 22, 2009
(Saros 136)
SE2020Jun21A.png
June 21, 2020
(Saros 137)
SE2031May21A.png
May 21, 2031
(Saros 138)
SE2042Apr20T.png
April 20, 2042
(Saros 139)
SE2053Mar20A.png
March 20, 2053
(Saros 140)
SE2064Feb17A.png
February 17, 2064
(Saros 141)
SE2075Jan16T.png
January 16, 2075
(Saros 142)
SE2085Dec16A.png
December 16, 2085
(Saros 143)
SE2096Nov15A.png
November 15, 2096
(Saros 144)
SE2107Oct16T.png
October 16, 2107
(Saros 145)
SE2118Sep15T.png
September 15, 2118
(Saros 146)
SE2129Aug15A.png
August 15, 2129
(Saros 147)
Saros148 28van75 SE2140Jul14T.jpg
July 14, 2140
(Saros 148)
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
(Saros 149)
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
(Saros 150)
Saros151 23van72 SE2173Apr12A.jpg
April 12, 2173
(Saros 151)
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184
(Saros 152)
Saros153 19van70 SE2195Feb10A.jpg
February 10, 2195
(Saros 153)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Oct09T.gif
October 9, 1809
(Saros 121)
SE1838Sep18A.gif
September 18, 1838
(Saros 122)
SE1867Aug29T.gif
August 29, 1867
(Saros 123)
SE1896Aug09T.png
August 9, 1896
(Saros 124)
SE1925Jul20A.png
July 20, 1925
(Saros 125)
SE1954Jun30T.png
June 30, 1954
(Saros 126)
SE1983Jun11T.png
June 11, 1983
(Saros 127)
SE2012May20A.png
May 20, 2012
(Saros 128)
SE2041Apr30T.png
April 30, 2041
(Saros 129)
SE2070Apr11T.png
April 11, 2070
(Saros 130)
SE2099Mar21A.png
March 21, 2099
(Saros 131)
SE2128Mar01A.png
March 1, 2128
(Saros 132)
SE2157Feb09T.png
February 9, 2157
(Saros 133)
SE2186Jan20A.png
January 20, 2186
(Saros 134)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of August 24, 2063</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, August 23 and Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 2.5 hours before perigee, the Moon's apparent diameter will be larger. Perigee did occur near the very end of this eclipse.

<span class="mw-page-title-main">Solar eclipse of February 14, 1934</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, February 13 and Wednesday, February 14, 1934, with a magnitude of 1.0321. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.6 days after perigee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of December 17, 2066</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Thursday, December 16 and Friday, December 17, 2066, with a magnitude of 1.0416. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 18.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 2, 2035</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Saturday, September 1 and Sunday, September 2, 2035, with a magnitude of 1.032. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 15, 2039</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, December 15, 2039, with a magnitude of 1.0356. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 5, 1954</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, January 5, 1954, with a magnitude of 0.972. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.5 days after apogee and 5.3 days before perigee.

<span class="mw-page-title-main">Solar eclipse of January 27, 2093</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 27, 2093, with a magnitude of 1.034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Tuesday, December 25 and Wednesday, December 26, 2057, with a magnitude of 1.0348. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 6.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 12, 2064</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.2 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 22, 2077</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 22, 2077, with a magnitude of 1.029. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 24, 2082</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Sunday, August 23 and Monday, August 24, 2082, with a magnitude of 1.0452. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 29, 1886</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 29, 1886, with a magnitude of 1.0735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of September 8, 1885</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, September 8, 1885, with a magnitude of 1.0332. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 16, 1874</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, April 16, 1874, with a magnitude of 1.0569. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 16 hours after perigee, the Moon's apparent diameter was larger.

References

  1. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 3 September 2024.
  2. L. Grosch (1869). "Beobachtung der Sonnenfinsterniss am 29. August 1867". Astronomische Nachrichten. 73 (9): 137–138. Bibcode:1869AN.....73..137G. doi:10.1002/asna.18690730903.
  3. "Total Solar Eclipse of 1867 Aug 29". EclipseWise.com. Retrieved 3 September 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 123". eclipse.gsfc.nasa.gov.