Solar eclipse of December 13, 1936

Last updated
Solar eclipse of December 13, 1936
SE1936Dec13A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.2493
Magnitude 0.9349
Maximum eclipse
Duration445 s (7 min 25 s)
Coordinates 37°48′S172°36′W / 37.8°S 172.6°W / -37.8; -172.6
Max. width of band251 km (156 mi)
Times (UTC)
Greatest eclipse23:28:12
References
Saros 131 (46 of 70)
Catalog # (SE5000) 9368

An annular solar eclipse occurred at the Moon's ascending node of orbit between Sunday, December 13 and Monday, December 14, 1936, [1] with a magnitude of 0.9349. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.1 days after apogee (on December 9, 1936, at 20:00 UTC), the Moon's apparent diameter was larger. [2]

Contents

Annularity was visible from Australia and New Zealand on December 14 (Monday), and Oeno Island in the Pitcairn Islands on December 13 (Sunday). A partial eclipse was visible for parts of Australia, Oceania, and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

December 13, 1936 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1936 December 13 at 20:27:13.0 UTC
First Umbral External Contact1936 December 13 at 21:32:18.0 UTC
First Central Line1936 December 13 at 21:35:09.5 UTC
First Umbral Internal Contact1936 December 13 at 21:38:01.1 UTC
First Penumbral Internal Contact1936 December 13 at 22:47:25.8 UTC
Greatest Duration1936 December 13 at 23:24:56.8 UTC
Ecliptic Conjunction1936 December 13 at 23:25:14.8 UTC
Equatorial Conjunction1936 December 13 at 23:27:03.5 UTC
Greatest Eclipse1936 December 13 at 23:28:11.7 UTC
Last Penumbral Internal Contact1936 December 14 at 00:09:00.2 UTC
Last Umbral Internal Contact1936 December 14 at 01:18:24.6 UTC
Last Central Line1936 December 14 at 01:21:14.0 UTC
Last Umbral External Contact1936 December 14 at 01:24:03.0 UTC
Last Penumbral External Contact1936 December 14 at 02:29:05.6 UTC
December 13, 1936 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.93493
Eclipse Obscuration0.87409
Gamma−0.24927
Sun Right Ascension17h24m20.6s
Sun Declination-23°11'38.5"
Sun Semi-Diameter16'15.0"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension17h24m23.0s
Moon Declination-23°25'17.2"
Moon Semi-Diameter14'58.2"
Moon Equatorial Horizontal Parallax0°54'56.3"
ΔT23.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1936
December 13
Ascending node (new moon)
December 28
Descending node (full moon)
SE1936Dec13A.png Lunar eclipse chart close-1936Dec28.png
Annular solar eclipse
Solar Saros 131
Penumbral lunar eclipse
Lunar Saros 143

Eclipses in 1936

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 131

Inex

Triad

Solar eclipses of 1935–1938

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipses on February 3, 1935 and July 30, 1935 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1935 to 1938
Ascending node Descending node
SarosMapGammaSarosMapGamma
111 January 5, 1935
SE1935Jan05P.png
Partial
−1.5381116 June 30, 1935
SE1935Jun30P.png
Partial
1.3623
121 December 25, 1935
SE1935Dec25A.png
Annular
−0.9228126 June 19, 1936
SE1936Jun19T.png
Total
0.5389
131 December 13, 1936
SE1936Dec13A.png
Annular
−0.2493136
Kanton total eclipse June8, 1937.jpg
Totality in Kanton Island,
Kiribati
June 8, 1937
SE1937Jun08T.png
Total
−0.2253
141 December 2, 1937
SE1937Dec02A.png
Annular
0.4389146 May 29, 1938
SE1938May29T.png
Total
−0.9607
151 November 21, 1938
SE1938Nov21P.png
Partial
1.1077

Saros 131

This eclipse is a part of Saros series 131, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on August 1, 1125. It contains total eclipses from March 27, 1522 through May 30, 1612; hybrid eclipses from June 10, 1630 through July 24, 1702; and annular eclipses from August 4, 1720 through June 18, 2243. The series ends at member 70 as a partial eclipse on September 2, 2369. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 28 at 58 seconds on May 30, 1612, and the longest duration of annularity was produced by member 50 at 7 minutes, 54 seconds on January 26, 2009. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 39–60 occur between 1801 and 2200:
394041
SE1810Sep28A.png
September 28, 1810
SE1828Oct09A.png
October 9, 1828
SE1846Oct20A.png
October 20, 1846
424344
SE1864Oct30A.png
October 30, 1864
SE1882Nov10A.png
November 10, 1882
SE1900Nov22A.png
November 22, 1900
454647
SE1918Dec03A.png
December 3, 1918
SE1936Dec13A.png
December 13, 1936
SE1954Dec25A.png
December 25, 1954
484950
SE1973Jan04A.png
January 4, 1973
SE1991Jan15A.png
January 15, 1991
SE2009Jan26A.png
January 26, 2009
515253
SE2027Feb06A.png
February 6, 2027
SE2045Feb16A.png
February 16, 2045
SE2063Feb28A.png
February 28, 2063
545556
SE2081Mar10A.png
March 10, 2081
SE2099Mar21A.png
March 21, 2099
SE2117Apr02A.png
April 2, 2117
575859
SE2135Apr13A.png
April 13, 2135
SE2153Apr23A.png
April 23, 2153
SE2171May05A.png
May 5, 2171
60
SE2189May15A.png
May 15, 2189

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 13, 1898 and July 20, 1982
December 13–14October 1–2July 20–21May 9February 24–25
111113115117119
SE1898Dec13P.gif
December 13, 1898
SE1906Jul21P.png
July 21, 1906
SE1910May09T.png
May 9, 1910
SE1914Feb25A.png
February 25, 1914
121123125127129
SE1917Dec14A.png
December 14, 1917
SE1921Oct01T.png
October 1, 1921
SE1925Jul20A.png
July 20, 1925
SE1929May09T.png
May 9, 1929
SE1933Feb24A.png
February 24, 1933
131133135137139
SE1936Dec13A.png
December 13, 1936
SE1940Oct01T.png
October 1, 1940
SE1944Jul20A.png
July 20, 1944
SE1948May09A.png
May 9, 1948
SE1952Feb25T.png
February 25, 1952
141143145147149
SE1955Dec14A.png
December 14, 1955
SE1959Oct02T.png
October 2, 1959
SE1963Jul20T.png
July 20, 1963
SE1967May09P.png
May 9, 1967
SE1971Feb25P.png
February 25, 1971
151153155
SE1974Dec13P.png
December 13, 1974
SE1978Oct02P.png
October 2, 1978
SE1982Jul20P.png
July 20, 1982

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Dec21A.gif
December 21, 1805
(Saros 119)
SE1816Nov19T.gif
November 19, 1816
(Saros 120)
SE1827Oct20H.gif
October 20, 1827
(Saros 121)
SE1838Sep18A.gif
September 18, 1838
(Saros 122)
SE1849Aug18T.gif
August 18, 1849
(Saros 123)
SE1860Jul18T.gif
July 18, 1860
(Saros 124)
SE1871Jun18A.gif
June 18, 1871
(Saros 125)
SE1882May17T.png
May 17, 1882
(Saros 126)
SE1893Apr16T.png
April 16, 1893
(Saros 127)
SE1904Mar17A.png
March 17, 1904
(Saros 128)
SE1915Feb14A.png
February 14, 1915
(Saros 129)
SE1926Jan14T.png
January 14, 1926
(Saros 130)
SE1936Dec13A.png
December 13, 1936
(Saros 131)
SE1947Nov12A.png
November 12, 1947
(Saros 132)
SE1958Oct12T.png
October 12, 1958
(Saros 133)
SE1969Sep11A.png
September 11, 1969
(Saros 134)
SE1980Aug10A.png
August 10, 1980
(Saros 135)
SE1991Jul11T.png
July 11, 1991
(Saros 136)
SE2002Jun10A.png
June 10, 2002
(Saros 137)
SE2013May10A.png
May 10, 2013
(Saros 138)
SE2024Apr08T.png
April 8, 2024
(Saros 139)
SE2035Mar09A.png
March 9, 2035
(Saros 140)
SE2046Feb05A.png
February 5, 2046
(Saros 141)
SE2057Jan05T.png
January 5, 2057
(Saros 142)
SE2067Dec06H.png
December 6, 2067
(Saros 143)
SE2078Nov04A.png
November 4, 2078
(Saros 144)
SE2089Oct04T.png
October 4, 2089
(Saros 145)
SE2100Sep04T.png
September 4, 2100
(Saros 146)
SE2111Aug04A.png
August 4, 2111
(Saros 147)
Saros148 27van75 SE2122Jul04T.jpg
July 4, 2122
(Saros 148)
SE2133Jun03T.png
June 3, 2133
(Saros 149)
Saros150 24van71 SE2144May03A.jpg
May 3, 2144
(Saros 150)
SE2155Apr02A.png
April 2, 2155
(Saros 151)
Saros152 21van70 SE2166Mar02T.jpg
March 2, 2166
(Saros 152)
Saros153 18van70 SE2177Jan29A.jpg
January 29, 2177
(Saros 153)
Saros154 16van71 SE2187Dec29A.jpg
December 29, 2187
(Saros 154)
SE2198Nov28T.png
November 28, 2198
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1821Mar04T.gif
March 4, 1821
(Saros 127)
SE1850Feb12A.gif
February 12, 1850
(Saros 128)
SE1879Jan22A.gif
January 22, 1879
(Saros 129)
SE1908Jan03T.png
January 3, 1908
(Saros 130)
SE1936Dec13A.png
December 13, 1936
(Saros 131)
SE1965Nov23A.png
November 23, 1965
(Saros 132)
SE1994Nov03T.png
November 3, 1994
(Saros 133)
SE2023Oct14A.png
October 14, 2023
(Saros 134)
SE2052Sep22A.png
September 22, 2052
(Saros 135)
SE2081Sep03T.png
September 3, 2081
(Saros 136)
SE2110Aug15A.png
August 15, 2110
(Saros 137)
SE2139Jul25A.png
July 25, 2139
(Saros 138)
SE2168Jul05T.png
July 5, 2168
(Saros 139)
SE2197Jun15A.png
June 15, 2197
(Saros 140)

Notes

  1. "December 13–14, 1936 Annular Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 3 August 2024.
  3. "Annular Solar Eclipse of 1936 Dec 13". EclipseWise.com. Retrieved 3 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 131". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 16, 1999</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, February 16, 1999, with a magnitude of 0.9928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the southern Indian Ocean including the Prince Edward Islands, South Africa, and Australia.

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 26, 2028</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, January 26, 2028, with a magnitude of 0.9208. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 4, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, January 4, 1973, with a magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile and Argentina.

<span class="mw-page-title-main">Solar eclipse of January 25, 1963</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, January 25, 1963, with a magnitude of 0.9951. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity crossed Chile, Argentina, South Africa, southern Basutoland and Malagasy Republic. Occurring 3.7 days before perigee, the Moon's apparent diameter was larger. The moon was 374,860 km from the Earth.

<span class="mw-page-title-main">Solar eclipse of August 20, 1952</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 20, 1952, with a magnitude of 0.942. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru including the capital city Lima, northeastern Chile, Bolivia including the constitutional capital Sucre and seat of government La Paz, Argentina, Paraguay, southern Brazil and Uruguay.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2060</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 28, 2063</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063, with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 15, 2096</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References